MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem5 Structured version   Visualization version   GIF version

Theorem hsmexlem5 9252
Description: Lemma for hsmex 9254. Combining the above constraints, along with itunitc 9243 and tcrank 8747, gives an effective constraint on the rank of 𝑆. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypotheses
Ref Expression
hsmexlem4.x 𝑋 ∈ V
hsmexlem4.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
hsmexlem4.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
hsmexlem4.s 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
hsmexlem4.o 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
Assertion
Ref Expression
hsmexlem5 (𝑑𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ran 𝐻)))
Distinct variable groups:   𝑎,𝑐,𝑑,𝐻   𝑆,𝑐,𝑑   𝑈,𝑐,𝑑   𝑎,𝑏,𝑧,𝑋   𝑥,𝑎,𝑦   𝑏,𝑐,𝑑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑧,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑧,𝑏)   𝑂(𝑥,𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝑋(𝑥,𝑦,𝑐,𝑑)

Proof of Theorem hsmexlem5
StepHypRef Expression
1 hsmexlem4.s . . . . . . . 8 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
2 ssrab2 3687 . . . . . . . 8 {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋} ⊆ (𝑅1 “ On)
31, 2eqsstri 3635 . . . . . . 7 𝑆 (𝑅1 “ On)
43sseli 3599 . . . . . 6 (𝑑𝑆𝑑 (𝑅1 “ On))
5 tcrank 8747 . . . . . 6 (𝑑 (𝑅1 “ On) → (rank‘𝑑) = (rank “ (TC‘𝑑)))
64, 5syl 17 . . . . 5 (𝑑𝑆 → (rank‘𝑑) = (rank “ (TC‘𝑑)))
7 hsmexlem4.u . . . . . . . . 9 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
87itunifn 9239 . . . . . . . 8 (𝑑𝑆 → (𝑈𝑑) Fn ω)
9 fniunfv 6505 . . . . . . . 8 ((𝑈𝑑) Fn ω → 𝑐 ∈ ω ((𝑈𝑑)‘𝑐) = ran (𝑈𝑑))
108, 9syl 17 . . . . . . 7 (𝑑𝑆 𝑐 ∈ ω ((𝑈𝑑)‘𝑐) = ran (𝑈𝑑))
117itunitc 9243 . . . . . . 7 (TC‘𝑑) = ran (𝑈𝑑)
1210, 11syl6reqr 2675 . . . . . 6 (𝑑𝑆 → (TC‘𝑑) = 𝑐 ∈ ω ((𝑈𝑑)‘𝑐))
1312imaeq2d 5466 . . . . 5 (𝑑𝑆 → (rank “ (TC‘𝑑)) = (rank “ 𝑐 ∈ ω ((𝑈𝑑)‘𝑐)))
14 imaiun 6503 . . . . . 6 (rank “ 𝑐 ∈ ω ((𝑈𝑑)‘𝑐)) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))
1514a1i 11 . . . . 5 (𝑑𝑆 → (rank “ 𝑐 ∈ ω ((𝑈𝑑)‘𝑐)) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
166, 13, 153eqtrd 2660 . . . 4 (𝑑𝑆 → (rank‘𝑑) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
17 dmresi 5457 . . . 4 dom ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))
1816, 17syl6eqr 2674 . . 3 (𝑑𝑆 → (rank‘𝑑) = dom ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
19 rankon 8658 . . . . . 6 (rank‘𝑑) ∈ On
2016, 19syl6eqelr 2710 . . . . 5 (𝑑𝑆 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)) ∈ On)
21 eloni 5733 . . . . 5 ( 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)) ∈ On → Ord 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
22 oiid 8446 . . . . 5 (Ord 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)) → OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
2320, 21, 223syl 18 . . . 4 (𝑑𝑆 → OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
2423dmeqd 5326 . . 3 (𝑑𝑆 → dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = dom ( I ↾ 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
2518, 24eqtr4d 2659 . 2 (𝑑𝑆 → (rank‘𝑑) = dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))))
26 omex 8540 . . . 4 ω ∈ V
27 wdomref 8477 . . . 4 (ω ∈ V → ω ≼* ω)
2826, 27mp1i 13 . . 3 (𝑑𝑆 → ω ≼* ω)
29 frfnom 7530 . . . . . . 7 (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) Fn ω
30 hsmexlem4.h . . . . . . . 8 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
3130fneq1i 5985 . . . . . . 7 (𝐻 Fn ω ↔ (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) Fn ω)
3229, 31mpbir 221 . . . . . 6 𝐻 Fn ω
33 fniunfv 6505 . . . . . 6 (𝐻 Fn ω → 𝑎 ∈ ω (𝐻𝑎) = ran 𝐻)
3432, 33ax-mp 5 . . . . 5 𝑎 ∈ ω (𝐻𝑎) = ran 𝐻
35 iunon 7436 . . . . . . 7 ((ω ∈ V ∧ ∀𝑎 ∈ ω (𝐻𝑎) ∈ On) → 𝑎 ∈ ω (𝐻𝑎) ∈ On)
3626, 35mpan 706 . . . . . 6 (∀𝑎 ∈ ω (𝐻𝑎) ∈ On → 𝑎 ∈ ω (𝐻𝑎) ∈ On)
3730hsmexlem9 9247 . . . . . 6 (𝑎 ∈ ω → (𝐻𝑎) ∈ On)
3836, 37mprg 2926 . . . . 5 𝑎 ∈ ω (𝐻𝑎) ∈ On
3934, 38eqeltrri 2698 . . . 4 ran 𝐻 ∈ On
4039a1i 11 . . 3 (𝑑𝑆 ran 𝐻 ∈ On)
41 fvssunirn 6217 . . . . . 6 (𝐻𝑐) ⊆ ran 𝐻
42 hsmexlem4.x . . . . . . . 8 𝑋 ∈ V
43 eqid 2622 . . . . . . . 8 OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
4442, 30, 7, 1, 43hsmexlem4 9251 . . . . . . 7 ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ (𝐻𝑐))
4544ancoms 469 . . . . . 6 ((𝑑𝑆𝑐 ∈ ω) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ (𝐻𝑐))
4641, 45sseldi 3601 . . . . 5 ((𝑑𝑆𝑐 ∈ ω) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻)
47 imassrn 5477 . . . . . . 7 (rank “ ((𝑈𝑑)‘𝑐)) ⊆ ran rank
48 rankf 8657 . . . . . . . 8 rank: (𝑅1 “ On)⟶On
49 frn 6053 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → ran rank ⊆ On)
5048, 49ax-mp 5 . . . . . . 7 ran rank ⊆ On
5147, 50sstri 3612 . . . . . 6 (rank “ ((𝑈𝑑)‘𝑐)) ⊆ On
52 ffun 6048 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → Fun rank)
53 fvex 6201 . . . . . . . . 9 ((𝑈𝑑)‘𝑐) ∈ V
5453funimaex 5976 . . . . . . . 8 (Fun rank → (rank “ ((𝑈𝑑)‘𝑐)) ∈ V)
5548, 52, 54mp2b 10 . . . . . . 7 (rank “ ((𝑈𝑑)‘𝑐)) ∈ V
5655elpw 4164 . . . . . 6 ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ↔ (rank “ ((𝑈𝑑)‘𝑐)) ⊆ On)
5751, 56mpbir 221 . . . . 5 (rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On
5846, 57jctil 560 . . . 4 ((𝑑𝑆𝑐 ∈ ω) → ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻))
5958ralrimiva 2966 . . 3 (𝑑𝑆 → ∀𝑐 ∈ ω ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻))
60 eqid 2622 . . . 4 OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐)))
6143, 60hsmexlem3 9250 . . 3 (((ω ≼* ω ∧ ran 𝐻 ∈ On) ∧ ∀𝑐 ∈ ω ((rank “ ((𝑈𝑑)‘𝑐)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) ∈ ran 𝐻)) → dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) ∈ (har‘𝒫 (ω × ran 𝐻)))
6228, 40, 59, 61syl21anc 1325 . 2 (𝑑𝑆 → dom OrdIso( E , 𝑐 ∈ ω (rank “ ((𝑈𝑑)‘𝑐))) ∈ (har‘𝒫 (ω × ran 𝐻)))
6325, 62eqeltrd 2701 1 (𝑑𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ran 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  wss 3574  𝒫 cpw 4158  {csn 4177   cuni 4436   ciun 4520   class class class wbr 4653  cmpt 4729   I cid 5023   E cep 5028   × cxp 5112  dom cdm 5114  ran crn 5115  cres 5116  cima 5117  Ord word 5722  Oncon0 5723  Fun wfun 5882   Fn wfn 5883  wf 5884  cfv 5888  ωcom 7065  reccrdg 7505  cdom 7953  OrdIsocoi 8414  harchar 8461  * cwdom 8462  TCctc 8612  𝑅1cr1 8625  rankcrnk 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-smo 7443  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-oi 8415  df-har 8463  df-wdom 8464  df-tc 8613  df-r1 8627  df-rank 8628
This theorem is referenced by:  hsmexlem6  9253
  Copyright terms: Public domain W3C validator