MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ingru Structured version   Visualization version   GIF version

Theorem ingru 9637
Description: The intersection of a universe with a class that acts like a universe is another universe. (Contributed by Mario Carneiro, 10-Jun-2013.)
Assertion
Ref Expression
ingru ((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (𝑈 ∈ Univ → (𝑈𝐴) ∈ Univ))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem ingru
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ineq1 3807 . . . . 5 (𝑢 = 𝑈 → (𝑢𝐴) = (𝑈𝐴))
21eleq1d 2686 . . . 4 (𝑢 = 𝑈 → ((𝑢𝐴) ∈ Univ ↔ (𝑈𝐴) ∈ Univ))
32imbi2d 330 . . 3 (𝑢 = 𝑈 → (((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (𝑢𝐴) ∈ Univ) ↔ ((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (𝑈𝐴) ∈ Univ)))
4 elgrug 9614 . . . . . 6 (𝑢 ∈ Univ → (𝑢 ∈ Univ ↔ (Tr 𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢))))
54ibi 256 . . . . 5 (𝑢 ∈ Univ → (Tr 𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢)))
6 trin 4763 . . . . . . 7 ((Tr 𝑢 ∧ Tr 𝐴) → Tr (𝑢𝐴))
76ex 450 . . . . . 6 (Tr 𝑢 → (Tr 𝐴 → Tr (𝑢𝐴)))
8 inss1 3833 . . . . . . . 8 (𝑢𝐴) ⊆ 𝑢
9 ssralv 3666 . . . . . . . 8 ((𝑢𝐴) ⊆ 𝑢 → (∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢) → ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢)))
108, 9ax-mp 5 . . . . . . 7 (∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢) → ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢))
11 inss2 3834 . . . . . . . 8 (𝑢𝐴) ⊆ 𝐴
12 ssralv 3666 . . . . . . . 8 ((𝑢𝐴) ⊆ 𝐴 → (∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) → ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))))
1311, 12ax-mp 5 . . . . . . 7 (∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) → ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)))
14 elin 3796 . . . . . . . . . . . . 13 (𝒫 𝑥 ∈ (𝑢𝐴) ↔ (𝒫 𝑥𝑢 ∧ 𝒫 𝑥𝐴))
1514simplbi2 655 . . . . . . . . . . . 12 (𝒫 𝑥𝑢 → (𝒫 𝑥𝐴 → 𝒫 𝑥 ∈ (𝑢𝐴)))
16 ssralv 3666 . . . . . . . . . . . . . 14 ((𝑢𝐴) ⊆ 𝑢 → (∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 → ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ 𝑢))
178, 16ax-mp 5 . . . . . . . . . . . . 13 (∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 → ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ 𝑢)
18 ssralv 3666 . . . . . . . . . . . . . 14 ((𝑢𝐴) ⊆ 𝐴 → (∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 → ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ 𝐴))
1911, 18ax-mp 5 . . . . . . . . . . . . 13 (∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 → ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ 𝐴)
20 elin 3796 . . . . . . . . . . . . . . 15 ({𝑥, 𝑦} ∈ (𝑢𝐴) ↔ ({𝑥, 𝑦} ∈ 𝑢 ∧ {𝑥, 𝑦} ∈ 𝐴))
2120simplbi2 655 . . . . . . . . . . . . . 14 ({𝑥, 𝑦} ∈ 𝑢 → ({𝑥, 𝑦} ∈ 𝐴 → {𝑥, 𝑦} ∈ (𝑢𝐴)))
2221ral2imi 2947 . . . . . . . . . . . . 13 (∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ 𝑢 → (∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ 𝐴 → ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴)))
2317, 19, 22syl2im 40 . . . . . . . . . . . 12 (∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 → (∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 → ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴)))
2415, 23im2anan9 880 . . . . . . . . . . 11 ((𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢) → ((𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴) → (𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴))))
25 vex 3203 . . . . . . . . . . . . . 14 𝑢 ∈ V
26 mapss 7900 . . . . . . . . . . . . . 14 ((𝑢 ∈ V ∧ (𝑢𝐴) ⊆ 𝑢) → ((𝑢𝐴) ↑𝑚 𝑥) ⊆ (𝑢𝑚 𝑥))
2725, 8, 26mp2an 708 . . . . . . . . . . . . 13 ((𝑢𝐴) ↑𝑚 𝑥) ⊆ (𝑢𝑚 𝑥)
28 ssralv 3666 . . . . . . . . . . . . 13 (((𝑢𝐴) ↑𝑚 𝑥) ⊆ (𝑢𝑚 𝑥) → (∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢 → ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦𝑢))
2927, 28ax-mp 5 . . . . . . . . . . . 12 (∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢 → ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦𝑢)
3025inex1 4799 . . . . . . . . . . . . . . . . 17 (𝑢𝐴) ∈ V
31 vex 3203 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
3230, 31elmap 7886 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ↔ 𝑦:𝑥⟶(𝑢𝐴))
33 fss 6056 . . . . . . . . . . . . . . . . 17 ((𝑦:𝑥⟶(𝑢𝐴) ∧ (𝑢𝐴) ⊆ 𝐴) → 𝑦:𝑥𝐴)
3411, 33mpan2 707 . . . . . . . . . . . . . . . 16 (𝑦:𝑥⟶(𝑢𝐴) → 𝑦:𝑥𝐴)
3532, 34sylbi 207 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) → 𝑦:𝑥𝐴)
3635imim1i 63 . . . . . . . . . . . . . 14 ((𝑦:𝑥𝐴 ran 𝑦𝐴) → (𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) → ran 𝑦𝐴))
3736alimi 1739 . . . . . . . . . . . . 13 (∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴) → ∀𝑦(𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) → ran 𝑦𝐴))
38 df-ral 2917 . . . . . . . . . . . . 13 (∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦𝐴 ↔ ∀𝑦(𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) → ran 𝑦𝐴))
3937, 38sylibr 224 . . . . . . . . . . . 12 (∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴) → ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦𝐴)
40 elin 3796 . . . . . . . . . . . . . 14 ( ran 𝑦 ∈ (𝑢𝐴) ↔ ( ran 𝑦𝑢 ran 𝑦𝐴))
4140simplbi2 655 . . . . . . . . . . . . 13 ( ran 𝑦𝑢 → ( ran 𝑦𝐴 ran 𝑦 ∈ (𝑢𝐴)))
4241ral2imi 2947 . . . . . . . . . . . 12 (∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦𝑢 → (∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦𝐴 → ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦 ∈ (𝑢𝐴)))
4329, 39, 42syl2im 40 . . . . . . . . . . 11 (∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢 → (∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴) → ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦 ∈ (𝑢𝐴)))
4424, 43im2anan9 880 . . . . . . . . . 10 (((𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢) ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢) → (((𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴) ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) → ((𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴)) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦 ∈ (𝑢𝐴))))
45443impa 1259 . . . . . . . . 9 ((𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢) → (((𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴) ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) → ((𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴)) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦 ∈ (𝑢𝐴))))
46 df-3an 1039 . . . . . . . . 9 ((𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) ↔ ((𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴) ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)))
47 df-3an 1039 . . . . . . . . 9 ((𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦 ∈ (𝑢𝐴)) ↔ ((𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴)) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦 ∈ (𝑢𝐴)))
4845, 46, 473imtr4g 285 . . . . . . . 8 ((𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢) → ((𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) → (𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦 ∈ (𝑢𝐴))))
4948ral2imi 2947 . . . . . . 7 (∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢) → (∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) → ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦 ∈ (𝑢𝐴))))
5010, 13, 49syl2im 40 . . . . . 6 (∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢) → (∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴)) → ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦 ∈ (𝑢𝐴))))
517, 50im2anan9 880 . . . . 5 ((Tr 𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢𝑚 𝑥) ran 𝑦𝑢)) → ((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (Tr (𝑢𝐴) ∧ ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦 ∈ (𝑢𝐴)))))
525, 51syl 17 . . . 4 (𝑢 ∈ Univ → ((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (Tr (𝑢𝐴) ∧ ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦 ∈ (𝑢𝐴)))))
53 elgrug 9614 . . . . 5 ((𝑢𝐴) ∈ V → ((𝑢𝐴) ∈ Univ ↔ (Tr (𝑢𝐴) ∧ ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦 ∈ (𝑢𝐴)))))
5430, 53ax-mp 5 . . . 4 ((𝑢𝐴) ∈ Univ ↔ (Tr (𝑢𝐴) ∧ ∀𝑥 ∈ (𝑢𝐴)(𝒫 𝑥 ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ (𝑢𝐴){𝑥, 𝑦} ∈ (𝑢𝐴) ∧ ∀𝑦 ∈ ((𝑢𝐴) ↑𝑚 𝑥) ran 𝑦 ∈ (𝑢𝐴))))
5552, 54syl6ibr 242 . . 3 (𝑢 ∈ Univ → ((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (𝑢𝐴) ∈ Univ))
563, 55vtoclga 3272 . 2 (𝑈 ∈ Univ → ((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (𝑈𝐴) ∈ Univ))
5756com12 32 1 ((Tr 𝐴 ∧ ∀𝑥𝐴 (𝒫 𝑥𝐴 ∧ ∀𝑦𝐴 {𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦(𝑦:𝑥𝐴 ran 𝑦𝐴))) → (𝑈 ∈ Univ → (𝑈𝐴) ∈ Univ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wal 1481   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158  {cpr 4179   cuni 4436  Tr wtr 4752  ran crn 5115  wf 5884  (class class class)co 6650  𝑚 cmap 7857  Univcgru 9612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-gru 9613
This theorem is referenced by:  wfgru  9638
  Copyright terms: Public domain W3C validator