![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonvolmbllem | Structured version Visualization version GIF version |
Description: If a subset 𝐵 of real numbers is Lebesgue measurable, then its corresponding 1-dimensional set is measurable w.r.t. the n-dimensional Lebesgue measure, (with 𝑛 equal to 1). (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
vonvolmbllem.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
vonvolmbllem.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ) |
vonvolmbllem.e | ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) |
vonvolmbllem.x | ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑𝑚 {𝐴})) |
vonvolmbllem.y | ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 |
Ref | Expression |
---|---|
vonvolmbllem | ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2764 | . . . . . . . 8 ⊢ Ⅎ𝑓𝑌 | |
2 | vonvolmbllem.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | vonvolmbllem.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ⊆ (ℝ ↑𝑚 {𝐴})) | |
4 | vonvolmbllem.y | . . . . . . . 8 ⊢ 𝑌 = ∪ 𝑓 ∈ 𝑋 ran 𝑓 | |
5 | 1, 2, 3, 4 | ssmapsn 39408 | . . . . . . 7 ⊢ (𝜑 → 𝑋 = (𝑌 ↑𝑚 {𝐴})) |
6 | 5 | ineq1d 3813 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ↑𝑚 {𝐴}) ∩ (𝐵 ↑𝑚 {𝐴}))) |
7 | reex 10027 | . . . . . . . . 9 ⊢ ℝ ∈ V | |
8 | 7 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → ℝ ∈ V) |
9 | 3 | sselda 3603 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓 ∈ (ℝ ↑𝑚 {𝐴})) |
10 | elmapi 7879 | . . . . . . . . . . . . 13 ⊢ (𝑓 ∈ (ℝ ↑𝑚 {𝐴}) → 𝑓:{𝐴}⟶ℝ) | |
11 | 9, 10 | syl 17 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → 𝑓:{𝐴}⟶ℝ) |
12 | frn 6053 | . . . . . . . . . . . 12 ⊢ (𝑓:{𝐴}⟶ℝ → ran 𝑓 ⊆ ℝ) | |
13 | 11, 12 | syl 17 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑋) → ran 𝑓 ⊆ ℝ) |
14 | 13 | ralrimiva 2966 | . . . . . . . . . 10 ⊢ (𝜑 → ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
15 | iunss 4561 | . . . . . . . . . 10 ⊢ (∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ ↔ ∀𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) | |
16 | 14, 15 | sylibr 224 | . . . . . . . . 9 ⊢ (𝜑 → ∪ 𝑓 ∈ 𝑋 ran 𝑓 ⊆ ℝ) |
17 | 4, 16 | syl5eqss 3649 | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ⊆ ℝ) |
18 | 8, 17 | ssexd 4805 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ V) |
19 | vonvolmbllem.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ⊆ ℝ) | |
20 | 8, 19 | ssexd 4805 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ V) |
21 | snex 4908 | . . . . . . . 8 ⊢ {𝐴} ∈ V | |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝐴} ∈ V) |
23 | 18, 20, 22 | inmap 39401 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑𝑚 {𝐴}) ∩ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ∩ 𝐵) ↑𝑚 {𝐴})) |
24 | 6, 23 | eqtrd 2656 | . . . . 5 ⊢ (𝜑 → (𝑋 ∩ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ∩ 𝐵) ↑𝑚 {𝐴})) |
25 | 24 | fveq2d 6195 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑𝑚 {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑𝑚 {𝐴}))) |
26 | 17 | ssinss1d 39214 | . . . . 5 ⊢ (𝜑 → (𝑌 ∩ 𝐵) ⊆ ℝ) |
27 | 2, 26 | ovnovol 40873 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∩ 𝐵) ↑𝑚 {𝐴})) = (vol*‘(𝑌 ∩ 𝐵))) |
28 | 25, 27 | eqtrd 2656 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑𝑚 {𝐴}))) = (vol*‘(𝑌 ∩ 𝐵))) |
29 | 5 | difeq1d 3727 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ↑𝑚 {𝐴}) ∖ (𝐵 ↑𝑚 {𝐴}))) |
30 | 18, 20, 2 | difmapsn 39404 | . . . . . 6 ⊢ (𝜑 → ((𝑌 ↑𝑚 {𝐴}) ∖ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ∖ 𝐵) ↑𝑚 {𝐴})) |
31 | 29, 30 | eqtrd 2656 | . . . . 5 ⊢ (𝜑 → (𝑋 ∖ (𝐵 ↑𝑚 {𝐴})) = ((𝑌 ∖ 𝐵) ↑𝑚 {𝐴})) |
32 | 31 | fveq2d 6195 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑𝑚 {𝐴}))) = ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑𝑚 {𝐴}))) |
33 | 17 | ssdifssd 3748 | . . . . 5 ⊢ (𝜑 → (𝑌 ∖ 𝐵) ⊆ ℝ) |
34 | 2, 33 | ovnovol 40873 | . . . 4 ⊢ (𝜑 → ((voln*‘{𝐴})‘((𝑌 ∖ 𝐵) ↑𝑚 {𝐴})) = (vol*‘(𝑌 ∖ 𝐵))) |
35 | 32, 34 | eqtrd 2656 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑𝑚 {𝐴}))) = (vol*‘(𝑌 ∖ 𝐵))) |
36 | 28, 35 | oveq12d 6668 | . 2 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑𝑚 {𝐴})))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
37 | 5 | fveq2d 6195 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((voln*‘{𝐴})‘(𝑌 ↑𝑚 {𝐴}))) |
38 | 2, 17 | ovnovol 40873 | . . 3 ⊢ (𝜑 → ((voln*‘{𝐴})‘(𝑌 ↑𝑚 {𝐴})) = (vol*‘𝑌)) |
39 | 18, 17 | elpwd 4167 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝒫 ℝ) |
40 | vonvolmbllem.e | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) | |
41 | fveq2 6191 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (vol*‘𝑦) = (vol*‘𝑌)) | |
42 | ineq1 3807 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∩ 𝐵) = (𝑌 ∩ 𝐵)) | |
43 | 42 | fveq2d 6195 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∩ 𝐵)) = (vol*‘(𝑌 ∩ 𝐵))) |
44 | difeq1 3721 | . . . . . . . 8 ⊢ (𝑦 = 𝑌 → (𝑦 ∖ 𝐵) = (𝑌 ∖ 𝐵)) | |
45 | 44 | fveq2d 6195 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → (vol*‘(𝑦 ∖ 𝐵)) = (vol*‘(𝑌 ∖ 𝐵))) |
46 | 43, 45 | oveq12d 6668 | . . . . . 6 ⊢ (𝑦 = 𝑌 → ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
47 | 41, 46 | eqeq12d 2637 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵))) ↔ (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵))))) |
48 | 47 | rspcva 3307 | . . . 4 ⊢ ((𝑌 ∈ 𝒫 ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝐵)) +𝑒 (vol*‘(𝑦 ∖ 𝐵)))) → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
49 | 39, 40, 48 | syl2anc 693 | . . 3 ⊢ (𝜑 → (vol*‘𝑌) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
50 | 37, 38, 49 | 3eqtrd 2660 | . 2 ⊢ (𝜑 → ((voln*‘{𝐴})‘𝑋) = ((vol*‘(𝑌 ∩ 𝐵)) +𝑒 (vol*‘(𝑌 ∖ 𝐵)))) |
51 | 36, 50 | eqtr4d 2659 | 1 ⊢ (𝜑 → (((voln*‘{𝐴})‘(𝑋 ∩ (𝐵 ↑𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑋 ∖ (𝐵 ↑𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 𝒫 cpw 4158 {csn 4177 ∪ ciun 4520 ran crn 5115 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 ℝcr 9935 +𝑒 cxad 11944 vol*covol 23231 voln*covoln 40750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-rlim 14220 df-sum 14417 df-prod 14636 df-rest 16083 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-bases 20750 df-cmp 21190 df-ovol 23233 df-vol 23234 df-sumge0 40580 df-ovoln 40751 |
This theorem is referenced by: vonvolmbl 40875 |
Copyright terms: Public domain | W3C validator |