![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrassa | Structured version Visualization version GIF version |
Description: The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrcnrg.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrcnrg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psrcnrg.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Ref | Expression |
---|---|
psrassa | ⊢ (𝜑 → 𝑆 ∈ AssAlg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2623 | . 2 ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑆)) | |
2 | psrcnrg.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
3 | psrcnrg.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
4 | psrcnrg.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
5 | 2, 3, 4 | psrsca 19389 | . 2 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑆)) |
6 | eqidd 2623 | . 2 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) | |
7 | eqidd 2623 | . 2 ⊢ (𝜑 → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆)) | |
8 | eqidd 2623 | . 2 ⊢ (𝜑 → (.r‘𝑆) = (.r‘𝑆)) | |
9 | crngring 18558 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
10 | 4, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
11 | 2, 3, 10 | psrlmod 19401 | . 2 ⊢ (𝜑 → 𝑆 ∈ LMod) |
12 | 2, 3, 10 | psrring 19411 | . 2 ⊢ (𝜑 → 𝑆 ∈ Ring) |
13 | 3 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝐼 ∈ 𝑉) |
14 | 10 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring) |
15 | eqid 2622 | . . . 4 ⊢ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
16 | eqid 2622 | . . . 4 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
17 | eqid 2622 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
18 | simpr2 1068 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆)) | |
19 | simpr3 1069 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆)) | |
20 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ CRing) |
21 | eqid 2622 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
22 | eqid 2622 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
23 | simpr1 1067 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑅)) | |
24 | 2, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 | psrass23 19410 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (((𝑥( ·𝑠 ‘𝑆)𝑦)(.r‘𝑆)𝑧) = (𝑥( ·𝑠 ‘𝑆)(𝑦(.r‘𝑆)𝑧)) ∧ (𝑦(.r‘𝑆)(𝑥( ·𝑠 ‘𝑆)𝑧)) = (𝑥( ·𝑠 ‘𝑆)(𝑦(.r‘𝑆)𝑧)))) |
25 | 24 | simpld 475 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠 ‘𝑆)𝑦)(.r‘𝑆)𝑧) = (𝑥( ·𝑠 ‘𝑆)(𝑦(.r‘𝑆)𝑧))) |
26 | 24 | simprd 479 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(.r‘𝑆)(𝑥( ·𝑠 ‘𝑆)𝑧)) = (𝑥( ·𝑠 ‘𝑆)(𝑦(.r‘𝑆)𝑧))) |
27 | 1, 5, 6, 7, 8, 11, 12, 4, 25, 26 | isassad 19323 | 1 ⊢ (𝜑 → 𝑆 ∈ AssAlg) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 {crab 2916 ◡ccnv 5113 “ cima 5117 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 Fincfn 7955 ℕcn 11020 ℕ0cn0 11292 Basecbs 15857 .rcmulr 15942 ·𝑠 cvsca 15945 Ringcrg 18547 CRingccrg 18548 AssAlgcasa 19309 mPwSer cmps 19351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-ofr 6898 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-sca 15957 df-vsca 15958 df-tset 15960 df-0g 16102 df-gsum 16103 df-mre 16246 df-mrc 16247 df-acs 16249 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-mhm 17335 df-submnd 17336 df-grp 17425 df-minusg 17426 df-mulg 17541 df-ghm 17658 df-cntz 17750 df-cmn 18195 df-abl 18196 df-mgp 18490 df-ur 18502 df-ring 18549 df-cring 18550 df-lmod 18865 df-assa 19312 df-psr 19356 |
This theorem is referenced by: mplassa 19454 mplbas2 19470 opsrassa 19489 mplind 19502 evlseu 19516 |
Copyright terms: Public domain | W3C validator |