| Step | Hyp | Ref
| Expression |
| 1 | | matassa.a |
. . 3
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 2 | | eqid 2622 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 3 | 1, 2 | matbas2 20227 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
((Base‘𝑅)
↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 4 | 1 | matsca2 20226 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝐴)) |
| 5 | | eqidd 2623 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(Base‘𝑅) =
(Base‘𝑅)) |
| 6 | | eqidd 2623 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (
·𝑠 ‘𝐴) = ( ·𝑠
‘𝐴)) |
| 7 | | eqid 2622 |
. . 3
⊢ (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
| 8 | 1, 7 | matmulr 20244 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) = (.r‘𝐴)) |
| 9 | | crngring 18558 |
. . 3
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 10 | 1 | matlmod 20235 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) |
| 11 | 9, 10 | sylan2 491 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ LMod) |
| 12 | 1 | matring 20249 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 13 | 9, 12 | sylan2 491 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring) |
| 14 | | simpr 477 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing) |
| 15 | 9 | ad2antlr 763 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑅 ∈ Ring) |
| 16 | | simpll 790 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑁 ∈ Fin) |
| 17 | | eqid 2622 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 18 | | simpr1 1067 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑥 ∈ (Base‘𝑅)) |
| 19 | | simpr2 1068 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
| 20 | | simpr3 1069 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
| 21 | 2, 15, 7, 16, 16, 16, 17, 18, 19, 20 | mamuvs1 20211 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → ((((𝑁 × 𝑁) × {𝑥}) ∘𝑓
(.r‘𝑅)𝑦)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) = (((𝑁 × 𝑁) × {𝑥}) ∘𝑓
(.r‘𝑅)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) |
| 22 | 3 | adantr 481 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 23 | 19, 22 | eleqtrd 2703 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑦 ∈ (Base‘𝐴)) |
| 24 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 25 | | eqid 2622 |
. . . . . 6
⊢ (
·𝑠 ‘𝐴) = ( ·𝑠
‘𝐴) |
| 26 | | eqid 2622 |
. . . . . 6
⊢ (𝑁 × 𝑁) = (𝑁 × 𝑁) |
| 27 | 1, 24, 2, 25, 17, 26 | matvsca2 20234 |
. . . . 5
⊢ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥( ·𝑠
‘𝐴)𝑦) = (((𝑁 × 𝑁) × {𝑥}) ∘𝑓
(.r‘𝑅)𝑦)) |
| 28 | 18, 23, 27 | syl2anc 693 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑥( ·𝑠
‘𝐴)𝑦) = (((𝑁 × 𝑁) × {𝑥}) ∘𝑓
(.r‘𝑅)𝑦)) |
| 29 | 28 | oveq1d 6665 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → ((𝑥( ·𝑠
‘𝐴)𝑦)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) = ((((𝑁 × 𝑁) × {𝑥}) ∘𝑓
(.r‘𝑅)𝑦)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)) |
| 30 | 2, 15, 7, 16, 16, 16, 19, 20 | mamucl 20207 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
| 31 | 30, 22 | eleqtrd 2703 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ (Base‘𝐴)) |
| 32 | 1, 24, 2, 25, 17, 26 | matvsca2 20234 |
. . . 4
⊢ ((𝑥 ∈ (Base‘𝑅) ∧ (𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) ∈ (Base‘𝐴)) → (𝑥( ·𝑠
‘𝐴)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)) = (((𝑁 × 𝑁) × {𝑥}) ∘𝑓
(.r‘𝑅)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) |
| 33 | 18, 31, 32 | syl2anc 693 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑥( ·𝑠
‘𝐴)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧)) = (((𝑁 × 𝑁) × {𝑥}) ∘𝑓
(.r‘𝑅)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) |
| 34 | 21, 29, 33 | 3eqtr4d 2666 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → ((𝑥( ·𝑠
‘𝐴)𝑦)(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧) = (𝑥( ·𝑠
‘𝐴)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) |
| 35 | | simplr 792 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑅 ∈ CRing) |
| 36 | 35, 2, 17, 7, 16, 16, 16, 19, 18, 20 | mamuvs2 20212 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(((𝑁 × 𝑁) × {𝑥}) ∘𝑓
(.r‘𝑅)𝑧)) = (((𝑁 × 𝑁) × {𝑥}) ∘𝑓
(.r‘𝑅)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) |
| 37 | 20, 22 | eleqtrd 2703 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → 𝑧 ∈ (Base‘𝐴)) |
| 38 | 1, 24, 2, 25, 17, 26 | matvsca2 20234 |
. . . . 5
⊢ ((𝑥 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝐴)) → (𝑥( ·𝑠
‘𝐴)𝑧) = (((𝑁 × 𝑁) × {𝑥}) ∘𝑓
(.r‘𝑅)𝑧)) |
| 39 | 18, 37, 38 | syl2anc 693 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑥( ·𝑠
‘𝐴)𝑧) = (((𝑁 × 𝑁) × {𝑥}) ∘𝑓
(.r‘𝑅)𝑧)) |
| 40 | 39 | oveq2d 6666 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑥( ·𝑠
‘𝐴)𝑧)) = (𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(((𝑁 × 𝑁) × {𝑥}) ∘𝑓
(.r‘𝑅)𝑧))) |
| 41 | 36, 40, 33 | 3eqtr4d 2666 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) ∧ 𝑧 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))) → (𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)(𝑥( ·𝑠
‘𝐴)𝑧)) = (𝑥( ·𝑠
‘𝐴)(𝑦(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉)𝑧))) |
| 42 | 3, 4, 5, 6, 8, 11,
13, 14, 34, 41 | isassad 19323 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ AssAlg) |