Proof of Theorem assa2ass
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1061 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ AssAlg) |
| 2 | | simpr 477 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
| 3 | 2 | 3ad2ant2 1083 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐶 ∈ 𝐵) |
| 4 | | assalmod 19319 |
. . . 4
⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) |
| 5 | | simpl 473 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐴 ∈ 𝐵) |
| 6 | | simpl 473 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
| 7 | | assa2ass.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
| 8 | | assa2ass.f |
. . . . 5
⊢ 𝐹 = (Scalar‘𝑊) |
| 9 | | assa2ass.s |
. . . . 5
⊢ · = (
·𝑠 ‘𝑊) |
| 10 | | assa2ass.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐹) |
| 11 | 7, 8, 9, 10 | lmodvscl 18880 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
| 12 | 4, 5, 6, 11 | syl3an 1368 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · 𝑋) ∈ 𝑉) |
| 13 | | simpr 477 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) |
| 14 | 13 | 3ad2ant3 1084 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑌 ∈ 𝑉) |
| 15 | | assa2ass.t |
. . . 4
⊢ × =
(.r‘𝑊) |
| 16 | 7, 8, 10, 9, 15 | assaassr 19318 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐶 ∈ 𝐵 ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = (𝐶 · ((𝐴 · 𝑋) × 𝑌))) |
| 17 | 1, 3, 12, 14, 16 | syl13anc 1328 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = (𝐶 · ((𝐴 · 𝑋) × 𝑌))) |
| 18 | 7, 8, 10, 9, 15 | assaass 19317 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐶 ∈ 𝐵 ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = (𝐶 · ((𝐴 · 𝑋) × 𝑌))) |
| 19 | 18 | eqcomd 2628 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐶 ∈ 𝐵 ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐶 · ((𝐴 · 𝑋) × 𝑌)) = ((𝐶 · (𝐴 · 𝑋)) × 𝑌)) |
| 20 | 1, 3, 12, 14, 19 | syl13anc 1328 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐶 · ((𝐴 · 𝑋) × 𝑌)) = ((𝐶 · (𝐴 · 𝑋)) × 𝑌)) |
| 21 | 4 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ LMod) |
| 22 | 5 | 3ad2ant2 1083 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐴 ∈ 𝐵) |
| 23 | 6 | 3ad2ant3 1084 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑋 ∈ 𝑉) |
| 24 | | assa2ass.m |
. . . . . . 7
⊢ ∗ =
(.r‘𝐹) |
| 25 | 7, 8, 9, 10, 24 | lmodvsass 18888 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉)) → ((𝐶 ∗ 𝐴) · 𝑋) = (𝐶 · (𝐴 · 𝑋))) |
| 26 | 25 | eqcomd 2628 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉)) → (𝐶 · (𝐴 · 𝑋)) = ((𝐶 ∗ 𝐴) · 𝑋)) |
| 27 | 26 | oveq1d 6665 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝐶 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = (((𝐶 ∗ 𝐴) · 𝑋) × 𝑌)) |
| 28 | 21, 3, 22, 23, 27 | syl13anc 1328 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = (((𝐶 ∗ 𝐴) · 𝑋) × 𝑌)) |
| 29 | 8 | assasca 19321 |
. . . . . . . 8
⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ CRing) |
| 30 | | crngring 18558 |
. . . . . . . 8
⊢ (𝐹 ∈ CRing → 𝐹 ∈ Ring) |
| 31 | 29, 30 | syl 17 |
. . . . . . 7
⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ Ring) |
| 32 | 31 | adantr 481 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐹 ∈ Ring) |
| 33 | 2 | adantl 482 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐶 ∈ 𝐵) |
| 34 | 5 | adantl 482 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐴 ∈ 𝐵) |
| 35 | 10, 24 | ringcl 18561 |
. . . . . 6
⊢ ((𝐹 ∈ Ring ∧ 𝐶 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵) → (𝐶 ∗ 𝐴) ∈ 𝐵) |
| 36 | 32, 33, 34, 35 | syl3anc 1326 |
. . . . 5
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (𝐶 ∗ 𝐴) ∈ 𝐵) |
| 37 | 36 | 3adant3 1081 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐶 ∗ 𝐴) ∈ 𝐵) |
| 38 | 7, 8, 10, 9, 15 | assaass 19317 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ ((𝐶 ∗ 𝐴) ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝐶 ∗ 𝐴) · 𝑋) × 𝑌) = ((𝐶 ∗ 𝐴) · (𝑋 × 𝑌))) |
| 39 | 1, 37, 23, 14, 38 | syl13anc 1328 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝐶 ∗ 𝐴) · 𝑋) × 𝑌) = ((𝐶 ∗ 𝐴) · (𝑋 × 𝑌))) |
| 40 | 28, 39 | eqtrd 2656 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐶 · (𝐴 · 𝑋)) × 𝑌) = ((𝐶 ∗ 𝐴) · (𝑋 × 𝑌))) |
| 41 | 17, 20, 40 | 3eqtrd 2660 |
1
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = ((𝐶 ∗ 𝐴) · (𝑋 × 𝑌))) |