Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendassa Structured version   Visualization version   GIF version

Theorem mendassa 37764
Description: The module endomorphism algebra is an algebra. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
mendassa.a 𝐴 = (MEndo‘𝑀)
mendassa.s 𝑆 = (Scalar‘𝑀)
Assertion
Ref Expression
mendassa ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ AssAlg)

Proof of Theorem mendassa
Dummy variables 𝑥 𝑦 𝑧 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4 𝐴 = (MEndo‘𝑀)
21mendbas 37754 . . 3 (𝑀 LMHom 𝑀) = (Base‘𝐴)
32a1i 11 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (𝑀 LMHom 𝑀) = (Base‘𝐴))
4 mendassa.s . . . 4 𝑆 = (Scalar‘𝑀)
51, 4mendsca 37759 . . 3 𝑆 = (Scalar‘𝐴)
65a1i 11 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝑆 = (Scalar‘𝐴))
7 eqidd 2623 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (Base‘𝑆) = (Base‘𝑆))
8 eqidd 2623 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → ( ·𝑠𝐴) = ( ·𝑠𝐴))
9 eqidd 2623 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → (.r𝐴) = (.r𝐴))
101, 4mendlmod 37763 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ LMod)
111mendring 37762 . . 3 (𝑀 ∈ LMod → 𝐴 ∈ Ring)
1211adantr 481 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ Ring)
13 simpr 477 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝑆 ∈ CRing)
14 simpr3 1069 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ (𝑀 LMHom 𝑀))
15 eqid 2622 . . . . . . . 8 (Base‘𝑀) = (Base‘𝑀)
1615, 15lmhmf 19034 . . . . . . 7 (𝑧 ∈ (𝑀 LMHom 𝑀) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
1714, 16syl 17 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
1817ffvelrnda 6359 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑧𝑣) ∈ (Base‘𝑀))
1917feqmptd 6249 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 = (𝑣 ∈ (Base‘𝑀) ↦ (𝑧𝑣)))
20 simpr1 1067 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (Base‘𝑆))
21 simpr2 1068 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ (𝑀 LMHom 𝑀))
22 eqid 2622 . . . . . . . 8 ( ·𝑠𝑀) = ( ·𝑠𝑀)
23 eqid 2622 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
24 eqid 2622 . . . . . . . 8 ( ·𝑠𝐴) = ( ·𝑠𝐴)
251, 22, 2, 4, 23, 15, 24mendvsca 37761 . . . . . . 7 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑦) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
2620, 21, 25syl2anc 693 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑦) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦))
27 fvexd 6203 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (Base‘𝑀) ∈ V)
28 simplr1 1103 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑤 ∈ (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑆))
29 fvexd 6203 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑤 ∈ (Base‘𝑀)) → (𝑦𝑤) ∈ V)
30 fconstmpt 5163 . . . . . . . 8 ((Base‘𝑀) × {𝑥}) = (𝑤 ∈ (Base‘𝑀) ↦ 𝑥)
3130a1i 11 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑥}) = (𝑤 ∈ (Base‘𝑀) ↦ 𝑥))
3215, 15lmhmf 19034 . . . . . . . . 9 (𝑦 ∈ (𝑀 LMHom 𝑀) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3321, 32syl 17 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3433feqmptd 6249 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 = (𝑤 ∈ (Base‘𝑀) ↦ (𝑦𝑤)))
3527, 28, 29, 31, 34offval2 6914 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑦) = (𝑤 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦𝑤))))
3626, 35eqtrd 2656 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑦) = (𝑤 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦𝑤))))
37 fveq2 6191 . . . . . 6 (𝑤 = (𝑧𝑣) → (𝑦𝑤) = (𝑦‘(𝑧𝑣)))
3837oveq2d 6666 . . . . 5 (𝑤 = (𝑧𝑣) → (𝑥( ·𝑠𝑀)(𝑦𝑤)) = (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣))))
3918, 19, 36, 38fmptco 6396 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦) ∘ 𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣)))))
40 simplr1 1103 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → 𝑥 ∈ (Base‘𝑆))
41 fvexd 6203 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑦‘(𝑧𝑣)) ∈ V)
42 fconstmpt 5163 . . . . . 6 ((Base‘𝑀) × {𝑥}) = (𝑣 ∈ (Base‘𝑀) ↦ 𝑥)
4342a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((Base‘𝑀) × {𝑥}) = (𝑣 ∈ (Base‘𝑀) ↦ 𝑥))
44 eqid 2622 . . . . . . . 8 (.r𝐴) = (.r𝐴)
451, 2, 44mendmulr 37758 . . . . . . 7 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(.r𝐴)𝑧) = (𝑦𝑧))
4621, 14, 45syl2anc 693 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)𝑧) = (𝑦𝑧))
47 fcompt 6400 . . . . . . 7 ((𝑦:(Base‘𝑀)⟶(Base‘𝑀) ∧ 𝑧:(Base‘𝑀)⟶(Base‘𝑀)) → (𝑦𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑦‘(𝑧𝑣))))
4833, 17, 47syl2anc 693 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑦‘(𝑧𝑣))))
4946, 48eqtrd 2656 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑦‘(𝑧𝑣))))
5027, 40, 41, 43, 49offval2 6914 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)(𝑦(.r𝐴)𝑧)) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣)))))
5139, 50eqtr4d 2659 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦) ∘ 𝑧) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)(𝑦(.r𝐴)𝑧)))
5210adantr 481 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝐴 ∈ LMod)
532, 5, 24, 23lmodvscl 18880 . . . . 5 ((𝐴 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
5452, 20, 21, 53syl3anc 1326 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
551, 2, 44mendmulr 37758 . . . 4 (((𝑥( ·𝑠𝐴)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥( ·𝑠𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥( ·𝑠𝐴)𝑦) ∘ 𝑧))
5654, 14, 55syl2anc 693 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥( ·𝑠𝐴)𝑦) ∘ 𝑧))
5712adantr 481 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝐴 ∈ Ring)
582, 44ringcl 18561 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(.r𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
5957, 21, 14, 58syl3anc 1326 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
601, 22, 2, 4, 23, 15, 24mendvsca 37761 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ (𝑦(.r𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)(𝑦(.r𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)(𝑦(.r𝐴)𝑧)))
6120, 59, 60syl2anc 693 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)(𝑦(.r𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)(𝑦(.r𝐴)𝑧)))
6251, 56, 613eqtr4d 2666 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥( ·𝑠𝐴)𝑦)(.r𝐴)𝑧) = (𝑥( ·𝑠𝐴)(𝑦(.r𝐴)𝑧)))
63 simplr2 1104 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → 𝑦 ∈ (𝑀 LMHom 𝑀))
644, 23, 15, 22, 22lmhmlin 19035 . . . . . 6 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (Base‘𝑆) ∧ (𝑧𝑣) ∈ (Base‘𝑀)) → (𝑦‘(𝑥( ·𝑠𝑀)(𝑧𝑣))) = (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣))))
6563, 40, 18, 64syl3anc 1326 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑦‘(𝑥( ·𝑠𝑀)(𝑧𝑣))) = (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣))))
6665mpteq2dva 4744 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑣 ∈ (Base‘𝑀) ↦ (𝑦‘(𝑥( ·𝑠𝑀)(𝑧𝑣)))) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑦‘(𝑧𝑣)))))
67 simplll 798 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → 𝑀 ∈ LMod)
6815, 4, 22, 23lmodvscl 18880 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ (𝑧𝑣) ∈ (Base‘𝑀)) → (𝑥( ·𝑠𝑀)(𝑧𝑣)) ∈ (Base‘𝑀))
6967, 40, 18, 68syl3anc 1326 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑥( ·𝑠𝑀)(𝑧𝑣)) ∈ (Base‘𝑀))
701, 22, 2, 4, 23, 15, 24mendvsca 37761 . . . . . . 7 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑧))
7120, 14, 70syl2anc 693 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑧))
72 fvexd 6203 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑧𝑣) ∈ V)
7327, 40, 72, 43, 19offval2 6914 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑧𝑣))))
7471, 73eqtrd 2656 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑥( ·𝑠𝑀)(𝑧𝑣))))
75 fveq2 6191 . . . . 5 (𝑤 = (𝑥( ·𝑠𝑀)(𝑧𝑣)) → (𝑦𝑤) = (𝑦‘(𝑥( ·𝑠𝑀)(𝑧𝑣))))
7669, 74, 34, 75fmptco 6396 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦 ∘ (𝑥( ·𝑠𝐴)𝑧)) = (𝑣 ∈ (Base‘𝑀) ↦ (𝑦‘(𝑥( ·𝑠𝑀)(𝑧𝑣)))))
7766, 76, 503eqtr4d 2666 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦 ∘ (𝑥( ·𝑠𝐴)𝑧)) = (((Base‘𝑀) × {𝑥}) ∘𝑓 ( ·𝑠𝑀)(𝑦(.r𝐴)𝑧)))
782, 5, 24, 23lmodvscl 18880 . . . . 5 ((𝐴 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
7952, 20, 14, 78syl3anc 1326 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀))
801, 2, 44mendmulr 37758 . . . 4 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ (𝑥( ·𝑠𝐴)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑦(.r𝐴)(𝑥( ·𝑠𝐴)𝑧)) = (𝑦 ∘ (𝑥( ·𝑠𝐴)𝑧)))
8121, 79, 80syl2anc 693 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)(𝑥( ·𝑠𝐴)𝑧)) = (𝑦 ∘ (𝑥( ·𝑠𝐴)𝑧)))
8277, 81, 613eqtr4d 2666 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)(𝑥( ·𝑠𝐴)𝑧)) = (𝑥( ·𝑠𝐴)(𝑦(.r𝐴)𝑧)))
833, 6, 7, 8, 9, 10, 12, 13, 62, 82isassad 19323 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177  cmpt 4729   × cxp 5112  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895  Basecbs 15857  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  Ringcrg 18547  CRingccrg 18548  LModclmod 18863   LMHom clmhm 19019  AssAlgcasa 19309  MEndocmend 37745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-lmod 18865  df-lmhm 19022  df-assa 19312  df-mend 37746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator