Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbasisrelowllem2 Structured version   Visualization version   GIF version

Theorem isbasisrelowllem2 33204
Description: Lemma for isbasisrelowl 33206. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
isbasisrelowl.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
isbasisrelowllem2 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼)
Distinct variable groups:   𝑧,𝑎   𝑧,𝑏   𝑐,𝑑,𝑥,𝑧   𝑦,𝑐,𝑑,𝑧
Allowed substitution hints:   𝐼(𝑥,𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem isbasisrelowllem2
StepHypRef Expression
1 simplr1 1103 . . . . 5 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → 𝑐 ∈ ℝ)
2 simplr2 1104 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → 𝑑 ∈ ℝ)
3 nfv 1843 . . . . . . . . . . . 12 𝑧 𝑎 ∈ ℝ
4 nfv 1843 . . . . . . . . . . . 12 𝑧 𝑏 ∈ ℝ
5 nfrab1 3122 . . . . . . . . . . . . 13 𝑧{𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}
65nfeq2 2780 . . . . . . . . . . . 12 𝑧 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}
73, 4, 6nf3an 1831 . . . . . . . . . . 11 𝑧(𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
8 nfv 1843 . . . . . . . . . . . 12 𝑧 𝑐 ∈ ℝ
9 nfv 1843 . . . . . . . . . . . 12 𝑧 𝑑 ∈ ℝ
10 nfrab1 3122 . . . . . . . . . . . . 13 𝑧{𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}
1110nfeq2 2780 . . . . . . . . . . . 12 𝑧 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}
128, 9, 11nf3an 1831 . . . . . . . . . . 11 𝑧(𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
137, 12nfan 1828 . . . . . . . . . 10 𝑧((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
14 nfv 1843 . . . . . . . . . 10 𝑧(𝑎𝑐𝑑𝑏)
1513, 14nfan 1828 . . . . . . . . 9 𝑧(((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏))
16 nfcv 2764 . . . . . . . . 9 𝑧(𝑥𝑦)
17 simp3 1063 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) → 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
18 simp3 1063 . . . . . . . . . . . . . 14 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
19 elin 3796 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (𝑥𝑦) ↔ (𝑧𝑥𝑧𝑦))
20 eleq2 2690 . . . . . . . . . . . . . . . . . . 19 (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → (𝑧𝑥𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}))
21 rabid 3116 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} ↔ (𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)))
2220, 21syl6bb 276 . . . . . . . . . . . . . . . . . 18 (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → (𝑧𝑥 ↔ (𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏))))
2322anbi1d 741 . . . . . . . . . . . . . . . . 17 (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → ((𝑧𝑥𝑧𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ 𝑧𝑦)))
2419, 23syl5bb 272 . . . . . . . . . . . . . . . 16 (𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} → (𝑧 ∈ (𝑥𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ 𝑧𝑦)))
25 eleq2 2690 . . . . . . . . . . . . . . . . . 18 (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} → (𝑧𝑦𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
26 rabid 3116 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} ↔ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑)))
2725, 26syl6bb 276 . . . . . . . . . . . . . . . . 17 (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} → (𝑧𝑦 ↔ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))))
2827anbi2d 740 . . . . . . . . . . . . . . . 16 (𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} → (((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ 𝑧𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑)))))
2924, 28sylan9bb 736 . . . . . . . . . . . . . . 15 ((𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑧 ∈ (𝑥𝑦) ↔ ((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑)))))
30 an4 865 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))) ↔ ((𝑧 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))))
31 anidm 676 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℝ ∧ 𝑧 ∈ ℝ) ↔ 𝑧 ∈ ℝ)
3231anbi1i 731 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))))
3330, 32bitri 264 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))))
34 an4 865 . . . . . . . . . . . . . . . . . . 19 (((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)) ↔ ((𝑎𝑧𝑐𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)))
35 an42 866 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)) ↔ ((𝑎𝑧𝑐𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)))
3635bicomi 214 . . . . . . . . . . . . . . . . . . 19 (((𝑎𝑧𝑐𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)) ↔ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)))
3734, 36bitri 264 . . . . . . . . . . . . . . . . . 18 (((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)) ↔ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)))
3837bicomi 214 . . . . . . . . . . . . . . . . 17 (((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)) ↔ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))
3938anbi2i 730 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))))
4033, 39bitri 264 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℝ ∧ (𝑎𝑧𝑧 < 𝑏)) ∧ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))))
4129, 40syl6bb 276 . . . . . . . . . . . . . 14 ((𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)} ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
4217, 18, 41syl2an 494 . . . . . . . . . . . . 13 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
4342adantr 481 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
44 simpl 473 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))) → 𝑧 ∈ ℝ)
45 simprrl 804 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))) → 𝑐𝑧)
46 simprlr 803 . . . . . . . . . . . . 13 ((𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))) → 𝑧 < 𝑑)
4744, 45, 46jca32 558 . . . . . . . . . . . 12 ((𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))) → (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑)))
4843, 47syl6bi 243 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑧 ∈ (𝑥𝑦) → (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))))
49 3simpa 1058 . . . . . . . . . . . . . . . . . 18 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) → (𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ))
50 3simpa 1058 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ))
5149, 50anim12i 590 . . . . . . . . . . . . . . . . 17 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) → ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)))
52 letr 10131 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑎𝑐𝑐𝑧) → 𝑎𝑧))
53523expia 1267 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑧 ∈ ℝ → ((𝑎𝑐𝑐𝑧) → 𝑎𝑧)))
5453exp4a 633 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ) → (𝑧 ∈ ℝ → (𝑎𝑐 → (𝑐𝑧𝑎𝑧))))
5554ad2ant2r 783 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → (𝑎𝑐 → (𝑐𝑧𝑎𝑧))))
56 ltletr 10129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑏 ∈ ℝ) → ((𝑧 < 𝑑𝑑𝑏) → 𝑧 < 𝑏))
57563com13 1270 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑧 < 𝑑𝑑𝑏) → 𝑧 < 𝑏))
5857expcomd 454 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑑𝑏 → (𝑧 < 𝑑𝑧 < 𝑏)))
59583expia 1267 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑧 ∈ ℝ → (𝑑𝑏 → (𝑧 < 𝑑𝑧 < 𝑏))))
6059ad2ant2l 782 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → (𝑑𝑏 → (𝑧 < 𝑑𝑧 < 𝑏))))
6155, 60jcad 555 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → ((𝑎𝑐 → (𝑐𝑧𝑎𝑧)) ∧ (𝑑𝑏 → (𝑧 < 𝑑𝑧 < 𝑏)))))
62 prth 595 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑎𝑐 → (𝑐𝑧𝑎𝑧)) ∧ (𝑑𝑏 → (𝑧 < 𝑑𝑧 < 𝑏))) → ((𝑎𝑐𝑑𝑏) → ((𝑐𝑧𝑎𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏))))
6361, 62syl6 35 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑧 ∈ ℝ → ((𝑎𝑐𝑑𝑏) → ((𝑐𝑧𝑎𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)))))
6463com23 86 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑎𝑐𝑑𝑏) → (𝑧 ∈ ℝ → ((𝑐𝑧𝑎𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)))))
65 prth 595 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑐𝑧𝑎𝑧) ∧ (𝑧 < 𝑑𝑧 < 𝑏)) → ((𝑐𝑧𝑧 < 𝑑) → (𝑎𝑧𝑧 < 𝑏)))
6664, 65syl8 76 . . . . . . . . . . . . . . . . . . . . 21 (((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑎𝑐𝑑𝑏) → (𝑧 ∈ ℝ → ((𝑐𝑧𝑧 < 𝑑) → (𝑎𝑧𝑧 < 𝑏)))))
6766imp31 448 . . . . . . . . . . . . . . . . . . . 20 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐𝑧𝑧 < 𝑑) → (𝑎𝑧𝑧 < 𝑏)))
6867ancrd 577 . . . . . . . . . . . . . . . . . . 19 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐𝑧𝑧 < 𝑑) → ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑))))
69 an42 866 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)) ↔ ((𝑎𝑧𝑐𝑧) ∧ (𝑧 < 𝑏𝑧 < 𝑑)))
70 an4 865 . . . . . . . . . . . . . . . . . . . 20 (((𝑎𝑧𝑐𝑧) ∧ (𝑧 < 𝑏𝑧 < 𝑑)) ↔ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)))
7169, 70bitri 264 . . . . . . . . . . . . . . . . . . 19 (((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)) ↔ ((𝑎𝑧𝑧 < 𝑏) ∧ (𝑐𝑧𝑧 < 𝑑)))
7268, 71syl6ibr 242 . . . . . . . . . . . . . . . . . 18 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐𝑧𝑧 < 𝑑) → ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))))
73 simpr 477 . . . . . . . . . . . . . . . . . 18 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
7472, 73jctild 566 . . . . . . . . . . . . . . . . 17 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐𝑧𝑧 < 𝑑) → (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
7551, 74sylanl1 682 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) → ((𝑐𝑧𝑧 < 𝑑) → (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
7675imp 445 . . . . . . . . . . . . . . 15 ((((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ 𝑧 ∈ ℝ) ∧ (𝑐𝑧𝑧 < 𝑑)) → (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))))
7776an32s 846 . . . . . . . . . . . . . 14 ((((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ (𝑐𝑧𝑧 < 𝑑)) ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏))))
7843adantr 481 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ (𝑐𝑧𝑧 < 𝑑)) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
7978adantr 481 . . . . . . . . . . . . . 14 ((((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ (𝑐𝑧𝑧 < 𝑑)) ∧ 𝑧 ∈ ℝ) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ ((𝑎𝑧𝑧 < 𝑑) ∧ (𝑐𝑧𝑧 < 𝑏)))))
8077, 79mpbird 247 . . . . . . . . . . . . 13 ((((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) ∧ (𝑐𝑧𝑧 < 𝑑)) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ (𝑥𝑦))
8180expl 648 . . . . . . . . . . . 12 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (((𝑐𝑧𝑧 < 𝑑) ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ (𝑥𝑦)))
8281ancomsd 470 . . . . . . . . . . 11 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → ((𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑)) → 𝑧 ∈ (𝑥𝑦)))
8348, 82impbid 202 . . . . . . . . . 10 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑧 ∈ (𝑥𝑦) ↔ (𝑧 ∈ ℝ ∧ (𝑐𝑧𝑧 < 𝑑))))
8483, 26syl6bbr 278 . . . . . . . . 9 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑧 ∈ (𝑥𝑦) ↔ 𝑧 ∈ {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
8515, 16, 10, 84eqrd 3622 . . . . . . . 8 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
862, 85jca 554 . . . . . . 7 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑑 ∈ ℝ ∧ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
87 19.8a 2052 . . . . . . 7 ((𝑑 ∈ ℝ ∧ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → ∃𝑑(𝑑 ∈ ℝ ∧ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
8886, 87syl 17 . . . . . 6 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → ∃𝑑(𝑑 ∈ ℝ ∧ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
89 df-rex 2918 . . . . . 6 (∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} ↔ ∃𝑑(𝑑 ∈ ℝ ∧ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
9088, 89sylibr 224 . . . . 5 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
911, 90jca 554 . . . 4 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑐 ∈ ℝ ∧ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
92 19.8a 2052 . . . 4 ((𝑐 ∈ ℝ ∧ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}) → ∃𝑐(𝑐 ∈ ℝ ∧ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
9391, 92syl 17 . . 3 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → ∃𝑐(𝑐 ∈ ℝ ∧ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
94 df-rex 2918 . . 3 (∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)} ↔ ∃𝑐(𝑐 ∈ ℝ ∧ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)}))
9593, 94sylibr 224 . 2 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
96 isbasisrelowl.1 . . 3 𝐼 = ([,) “ (ℝ × ℝ))
9796icoreelrnab 33202 . 2 ((𝑥𝑦) ∈ 𝐼 ↔ ∃𝑐 ∈ ℝ ∃𝑑 ∈ ℝ (𝑥𝑦) = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})
9895, 97sylibr 224 1 ((((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}) ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = {𝑧 ∈ ℝ ∣ (𝑐𝑧𝑧 < 𝑑)})) ∧ (𝑎𝑐𝑑𝑏)) → (𝑥𝑦) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wrex 2913  {crab 2916  cin 3573   class class class wbr 4653   × cxp 5112  cima 5117  cr 9935   < clt 10074  cle 10075  [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ico 12181
This theorem is referenced by:  icoreclin  33205
  Copyright terms: Public domain W3C validator