| Step | Hyp | Ref
| Expression |
| 1 | | elex 3212 |
. . . 4
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) |
| 2 | | elex 3212 |
. . . 4
⊢ (𝐻 ∈ 𝑊 → 𝐻 ∈ V) |
| 3 | | eqidd 2623 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → 𝑓 = 𝑓) |
| 4 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
| 5 | | isismt.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
| 6 | 4, 5 | syl6eqr 2674 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
| 7 | | eqidd 2623 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (Base‘ℎ) = (Base‘ℎ)) |
| 8 | 3, 6, 7 | f1oeq123d 6133 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ↔ 𝑓:𝐵–1-1-onto→(Base‘ℎ))) |
| 9 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝐺 → (dist‘𝑔) = (dist‘𝐺)) |
| 10 | | isismt.d |
. . . . . . . . . . . 12
⊢ 𝐷 = (dist‘𝐺) |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝐺 → (dist‘𝑔) = 𝐷) |
| 12 | 11 | oveqd 6667 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (𝑎(dist‘𝑔)𝑏) = (𝑎𝐷𝑏)) |
| 13 | 12 | eqeq2d 2632 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏) ↔ ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏))) |
| 14 | 6, 13 | raleqbidv 3152 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏) ↔ ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏))) |
| 15 | 6, 14 | raleqbidv 3152 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → (∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏))) |
| 16 | 8, 15 | anbi12d 747 |
. . . . . 6
⊢ (𝑔 = 𝐺 → ((𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏)) ↔ (𝑓:𝐵–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏)))) |
| 17 | 16 | abbidv 2741 |
. . . . 5
⊢ (𝑔 = 𝐺 → {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))} = {𝑓 ∣ (𝑓:𝐵–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏))}) |
| 18 | | eqidd 2623 |
. . . . . . . 8
⊢ (ℎ = 𝐻 → 𝑓 = 𝑓) |
| 19 | | eqidd 2623 |
. . . . . . . 8
⊢ (ℎ = 𝐻 → 𝐵 = 𝐵) |
| 20 | | fveq2 6191 |
. . . . . . . . 9
⊢ (ℎ = 𝐻 → (Base‘ℎ) = (Base‘𝐻)) |
| 21 | | isismt.p |
. . . . . . . . 9
⊢ 𝑃 = (Base‘𝐻) |
| 22 | 20, 21 | syl6eqr 2674 |
. . . . . . . 8
⊢ (ℎ = 𝐻 → (Base‘ℎ) = 𝑃) |
| 23 | 18, 19, 22 | f1oeq123d 6133 |
. . . . . . 7
⊢ (ℎ = 𝐻 → (𝑓:𝐵–1-1-onto→(Base‘ℎ) ↔ 𝑓:𝐵–1-1-onto→𝑃)) |
| 24 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (ℎ = 𝐻 → (dist‘ℎ) = (dist‘𝐻)) |
| 25 | | isismt.m |
. . . . . . . . . . 11
⊢ − =
(dist‘𝐻) |
| 26 | 24, 25 | syl6eqr 2674 |
. . . . . . . . . 10
⊢ (ℎ = 𝐻 → (dist‘ℎ) = − ) |
| 27 | 26 | oveqd 6667 |
. . . . . . . . 9
⊢ (ℎ = 𝐻 → ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = ((𝑓‘𝑎) − (𝑓‘𝑏))) |
| 28 | 27 | eqeq1d 2624 |
. . . . . . . 8
⊢ (ℎ = 𝐻 → (((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏) ↔ ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))) |
| 29 | 28 | 2ralbidv 2989 |
. . . . . . 7
⊢ (ℎ = 𝐻 → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))) |
| 30 | 23, 29 | anbi12d 747 |
. . . . . 6
⊢ (ℎ = 𝐻 → ((𝑓:𝐵–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏)) ↔ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏)))) |
| 31 | 30 | abbidv 2741 |
. . . . 5
⊢ (ℎ = 𝐻 → {𝑓 ∣ (𝑓:𝐵–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎𝐷𝑏))} = {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))}) |
| 32 | | df-ismt 25428 |
. . . . 5
⊢ Ismt =
(𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))}) |
| 33 | | ovex 6678 |
. . . . . 6
⊢ (𝑃 ↑𝑚
𝐵) ∈
V |
| 34 | | f1of 6137 |
. . . . . . . . 9
⊢ (𝑓:𝐵–1-1-onto→𝑃 → 𝑓:𝐵⟶𝑃) |
| 35 | | fvex 6201 |
. . . . . . . . . . 11
⊢
(Base‘𝐻)
∈ V |
| 36 | 21, 35 | eqeltri 2697 |
. . . . . . . . . 10
⊢ 𝑃 ∈ V |
| 37 | | fvex 6201 |
. . . . . . . . . . 11
⊢
(Base‘𝐺)
∈ V |
| 38 | 5, 37 | eqeltri 2697 |
. . . . . . . . . 10
⊢ 𝐵 ∈ V |
| 39 | 36, 38 | elmap 7886 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝑃 ↑𝑚 𝐵) ↔ 𝑓:𝐵⟶𝑃) |
| 40 | 34, 39 | sylibr 224 |
. . . . . . . 8
⊢ (𝑓:𝐵–1-1-onto→𝑃 → 𝑓 ∈ (𝑃 ↑𝑚 𝐵)) |
| 41 | 40 | adantr 481 |
. . . . . . 7
⊢ ((𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏)) → 𝑓 ∈ (𝑃 ↑𝑚 𝐵)) |
| 42 | 41 | abssi 3677 |
. . . . . 6
⊢ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))} ⊆ (𝑃 ↑𝑚 𝐵) |
| 43 | 33, 42 | ssexi 4803 |
. . . . 5
⊢ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))} ∈ V |
| 44 | 17, 31, 32, 43 | ovmpt2 6796 |
. . . 4
⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (𝐺Ismt𝐻) = {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))}) |
| 45 | 1, 2, 44 | syl2an 494 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → (𝐺Ismt𝐻) = {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))}) |
| 46 | 45 | eleq2d 2687 |
. 2
⊢ ((𝐺 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → (𝐹 ∈ (𝐺Ismt𝐻) ↔ 𝐹 ∈ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))})) |
| 47 | | f1of 6137 |
. . . . 5
⊢ (𝐹:𝐵–1-1-onto→𝑃 → 𝐹:𝐵⟶𝑃) |
| 48 | | fex 6490 |
. . . . 5
⊢ ((𝐹:𝐵⟶𝑃 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) |
| 49 | 47, 38, 48 | sylancl 694 |
. . . 4
⊢ (𝐹:𝐵–1-1-onto→𝑃 → 𝐹 ∈ V) |
| 50 | 49 | adantr 481 |
. . 3
⊢ ((𝐹:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎𝐷𝑏)) → 𝐹 ∈ V) |
| 51 | | f1oeq1 6127 |
. . . 4
⊢ (𝑓 = 𝐹 → (𝑓:𝐵–1-1-onto→𝑃 ↔ 𝐹:𝐵–1-1-onto→𝑃)) |
| 52 | | fveq1 6190 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑓‘𝑎) = (𝐹‘𝑎)) |
| 53 | | fveq1 6190 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (𝑓‘𝑏) = (𝐹‘𝑏)) |
| 54 | 52, 53 | oveq12d 6668 |
. . . . . 6
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑎) − (𝑓‘𝑏)) = ((𝐹‘𝑎) − (𝐹‘𝑏))) |
| 55 | 54 | eqeq1d 2624 |
. . . . 5
⊢ (𝑓 = 𝐹 → (((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏) ↔ ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎𝐷𝑏))) |
| 56 | 55 | 2ralbidv 2989 |
. . . 4
⊢ (𝑓 = 𝐹 → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏) ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎𝐷𝑏))) |
| 57 | 51, 56 | anbi12d 747 |
. . 3
⊢ (𝑓 = 𝐹 → ((𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏)) ↔ (𝐹:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎𝐷𝑏)))) |
| 58 | 50, 57 | elab3 3358 |
. 2
⊢ (𝐹 ∈ {𝑓 ∣ (𝑓:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎𝐷𝑏))} ↔ (𝐹:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎𝐷𝑏))) |
| 59 | 46, 58 | syl6bb 276 |
1
⊢ ((𝐺 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → (𝐹 ∈ (𝐺Ismt𝐻) ↔ (𝐹:𝐵–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎𝐷𝑏)))) |