MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iskgen3 Structured version   Visualization version   GIF version

Theorem iskgen3 21352
Description: Derive the usual definition of "compactly generated". A topology is compactly generated if every subset of 𝑋 that is open in every compact subset is open. (Contributed by Mario Carneiro, 20-Mar-2015.)
Hypothesis
Ref Expression
iskgen3.1 𝑋 = 𝐽
Assertion
Ref Expression
iskgen3 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
Distinct variable groups:   𝑥,𝑘,𝐽   𝑘,𝑋
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem iskgen3
StepHypRef Expression
1 iskgen2 21351 . 2 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽))
2 iskgen3.1 . . . . . . . . . 10 𝑋 = 𝐽
32toptopon 20722 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
4 elkgen 21339 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
53, 4sylbi 207 . . . . . . . 8 (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
6 vex 3203 . . . . . . . . . 10 𝑥 ∈ V
76elpw 4164 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
87anbi1i 731 . . . . . . . 8 ((𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) ↔ (𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))))
95, 8syl6bbr 278 . . . . . . 7 (𝐽 ∈ Top → (𝑥 ∈ (𝑘Gen‘𝐽) ↔ (𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)))))
109imbi1d 331 . . . . . 6 (𝐽 ∈ Top → ((𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽) ↔ ((𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) → 𝑥𝐽)))
11 impexp 462 . . . . . 6 (((𝑥 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))) → 𝑥𝐽) ↔ (𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
1210, 11syl6bb 276 . . . . 5 (𝐽 ∈ Top → ((𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽) ↔ (𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽))))
1312albidv 1849 . . . 4 (𝐽 ∈ Top → (∀𝑥(𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽) ↔ ∀𝑥(𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽))))
14 dfss2 3591 . . . 4 ((𝑘Gen‘𝐽) ⊆ 𝐽 ↔ ∀𝑥(𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥𝐽))
15 df-ral 2917 . . . 4 (∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽) ↔ ∀𝑥(𝑥 ∈ 𝒫 𝑋 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
1613, 14, 153bitr4g 303 . . 3 (𝐽 ∈ Top → ((𝑘Gen‘𝐽) ⊆ 𝐽 ↔ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
1716pm5.32i 669 . 2 ((𝐽 ∈ Top ∧ (𝑘Gen‘𝐽) ⊆ 𝐽) ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
181, 17bitri 264 1 (𝐽 ∈ ran 𝑘Gen ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝒫 𝑋(∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) → 𝑥𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wcel 1990  wral 2912  cin 3573  wss 3574  𝒫 cpw 4158   cuni 4436  ran crn 5115  cfv 5888  (class class class)co 6650  t crest 16081  Topctop 20698  TopOnctopon 20715  Compccmp 21189  𝑘Genckgen 21336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-kgen 21337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator