| Step | Hyp | Ref
| Expression |
| 1 | | df-br 4654 |
. . 3
⊢ (𝐹(
≃ph‘𝐽)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (
≃ph‘𝐽)) |
| 2 | | df-phtpc 22791 |
. . . . 5
⊢
≃ph = (𝑗 ∈ Top ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ∧ (𝑓(PHtpy‘𝑗)𝑔) ≠ ∅)}) |
| 3 | 2 | dmmptss 5631 |
. . . 4
⊢ dom
≃ph ⊆ Top |
| 4 | | elfvdm 6220 |
. . . 4
⊢
(〈𝐹, 𝐺〉 ∈ (
≃ph‘𝐽) → 𝐽 ∈ dom
≃ph) |
| 5 | 3, 4 | sseldi 3601 |
. . 3
⊢
(〈𝐹, 𝐺〉 ∈ (
≃ph‘𝐽) → 𝐽 ∈ Top) |
| 6 | 1, 5 | sylbi 207 |
. 2
⊢ (𝐹(
≃ph‘𝐽)𝐺 → 𝐽 ∈ Top) |
| 7 | | cntop2 21045 |
. . 3
⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top) |
| 8 | 7 | 3ad2ant1 1082 |
. 2
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅) → 𝐽 ∈ Top) |
| 9 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽)) |
| 10 | 9 | sseq2d 3633 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ↔ {𝑓, 𝑔} ⊆ (II Cn 𝐽))) |
| 11 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑓 ∈ V |
| 12 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑔 ∈ V |
| 13 | 11, 12 | prss 4351 |
. . . . . . . 8
⊢ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ↔ {𝑓, 𝑔} ⊆ (II Cn 𝐽)) |
| 14 | 10, 13 | syl6bbr 278 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ↔ (𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)))) |
| 15 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑗 = 𝐽 → (PHtpy‘𝑗) = (PHtpy‘𝐽)) |
| 16 | 15 | oveqd 6667 |
. . . . . . . 8
⊢ (𝑗 = 𝐽 → (𝑓(PHtpy‘𝑗)𝑔) = (𝑓(PHtpy‘𝐽)𝑔)) |
| 17 | 16 | neeq1d 2853 |
. . . . . . 7
⊢ (𝑗 = 𝐽 → ((𝑓(PHtpy‘𝑗)𝑔) ≠ ∅ ↔ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)) |
| 18 | 14, 17 | anbi12d 747 |
. . . . . 6
⊢ (𝑗 = 𝐽 → (({𝑓, 𝑔} ⊆ (II Cn 𝑗) ∧ (𝑓(PHtpy‘𝑗)𝑔) ≠ ∅) ↔ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅))) |
| 19 | 18 | opabbidv 4716 |
. . . . 5
⊢ (𝑗 = 𝐽 → {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ∧ (𝑓(PHtpy‘𝑗)𝑔) ≠ ∅)} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}) |
| 20 | | ovex 6678 |
. . . . . . 7
⊢ (II Cn
𝐽) ∈
V |
| 21 | 20, 20 | xpex 6962 |
. . . . . 6
⊢ ((II Cn
𝐽) × (II Cn 𝐽)) ∈ V |
| 22 | | opabssxp 5193 |
. . . . . 6
⊢
{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} ⊆ ((II Cn 𝐽) × (II Cn 𝐽)) |
| 23 | 21, 22 | ssexi 4803 |
. . . . 5
⊢
{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} ∈ V |
| 24 | 19, 2, 23 | fvmpt 6282 |
. . . 4
⊢ (𝐽 ∈ Top → (
≃ph‘𝐽) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}) |
| 25 | 24 | breqd 4664 |
. . 3
⊢ (𝐽 ∈ Top → (𝐹(
≃ph‘𝐽)𝐺 ↔ 𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}𝐺)) |
| 26 | | oveq12 6659 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓(PHtpy‘𝐽)𝑔) = (𝐹(PHtpy‘𝐽)𝐺)) |
| 27 | 26 | neeq1d 2853 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓(PHtpy‘𝐽)𝑔) ≠ ∅ ↔ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) |
| 28 | | eqid 2622 |
. . . . 5
⊢
{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} |
| 29 | 27, 28 | brab2a 5194 |
. . . 4
⊢ (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}𝐺 ↔ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) |
| 30 | | df-3an 1039 |
. . . 4
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅) ↔ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) |
| 31 | 29, 30 | bitr4i 267 |
. . 3
⊢ (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) |
| 32 | 25, 31 | syl6bb 276 |
. 2
⊢ (𝐽 ∈ Top → (𝐹(
≃ph‘𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))) |
| 33 | 6, 8, 32 | pm5.21nii 368 |
1
⊢ (𝐹(
≃ph‘𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) |