MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcohtpylem Structured version   Visualization version   GIF version

Theorem pcohtpylem 22819
Description: Lemma for pcohtpy 22820. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
pcohtpy.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
pcohtpy.5 (𝜑𝐹( ≃ph𝐽)𝐻)
pcohtpy.6 (𝜑𝐺( ≃ph𝐽)𝐾)
pcohtpylem.7 𝑃 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)))
pcohtpylem.8 (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
pcohtpylem.9 (𝜑𝑁 ∈ (𝐺(PHtpy‘𝐽)𝐾))
Assertion
Ref Expression
pcohtpylem (𝜑𝑃 ∈ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦)

Proof of Theorem pcohtpylem
Dummy variables 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcohtpy.5 . . . . 5 (𝜑𝐹( ≃ph𝐽)𝐻)
2 isphtpc 22793 . . . . 5 (𝐹( ≃ph𝐽)𝐻 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
31, 2sylib 208 . . . 4 (𝜑 → (𝐹 ∈ (II Cn 𝐽) ∧ 𝐻 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐻) ≠ ∅))
43simp1d 1073 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
5 pcohtpy.6 . . . . 5 (𝜑𝐺( ≃ph𝐽)𝐾)
6 isphtpc 22793 . . . . 5 (𝐺( ≃ph𝐽)𝐾 ↔ (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
75, 6sylib 208 . . . 4 (𝜑 → (𝐺 ∈ (II Cn 𝐽) ∧ 𝐾 ∈ (II Cn 𝐽) ∧ (𝐺(PHtpy‘𝐽)𝐾) ≠ ∅))
87simp1d 1073 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
9 pcohtpy.4 . . 3 (𝜑 → (𝐹‘1) = (𝐺‘0))
104, 8, 9pcocn 22817 . 2 (𝜑 → (𝐹(*𝑝𝐽)𝐺) ∈ (II Cn 𝐽))
113simp2d 1074 . . 3 (𝜑𝐻 ∈ (II Cn 𝐽))
127simp2d 1074 . . 3 (𝜑𝐾 ∈ (II Cn 𝐽))
13 pcohtpylem.8 . . . . . 6 (𝜑𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻))
144, 11, 13phtpy01 22784 . . . . 5 (𝜑 → ((𝐹‘0) = (𝐻‘0) ∧ (𝐹‘1) = (𝐻‘1)))
1514simprd 479 . . . 4 (𝜑 → (𝐹‘1) = (𝐻‘1))
16 pcohtpylem.9 . . . . . 6 (𝜑𝑁 ∈ (𝐺(PHtpy‘𝐽)𝐾))
178, 12, 16phtpy01 22784 . . . . 5 (𝜑 → ((𝐺‘0) = (𝐾‘0) ∧ (𝐺‘1) = (𝐾‘1)))
1817simpld 475 . . . 4 (𝜑 → (𝐺‘0) = (𝐾‘0))
199, 15, 183eqtr3d 2664 . . 3 (𝜑 → (𝐻‘1) = (𝐾‘0))
2011, 12, 19pcocn 22817 . 2 (𝜑 → (𝐻(*𝑝𝐽)𝐾) ∈ (II Cn 𝐽))
21 pcohtpylem.7 . . 3 𝑃 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)))
22 eqid 2622 . . . 4 (topGen‘ran (,)) = (topGen‘ran (,))
23 eqid 2622 . . . 4 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
24 eqid 2622 . . . 4 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
25 dfii2 22685 . . . 4 II = ((topGen‘ran (,)) ↾t (0[,]1))
26 0red 10041 . . . 4 (𝜑 → 0 ∈ ℝ)
27 1red 10055 . . . 4 (𝜑 → 1 ∈ ℝ)
28 halfre 11246 . . . . . 6 (1 / 2) ∈ ℝ
29 0re 10040 . . . . . . 7 0 ∈ ℝ
30 halfgt0 11248 . . . . . . 7 0 < (1 / 2)
3129, 28, 30ltleii 10160 . . . . . 6 0 ≤ (1 / 2)
32 1re 10039 . . . . . . 7 1 ∈ ℝ
33 halflt1 11250 . . . . . . 7 (1 / 2) < 1
3428, 32, 33ltleii 10160 . . . . . 6 (1 / 2) ≤ 1
3529, 32elicc2i 12239 . . . . . 6 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
3628, 31, 34, 35mpbir3an 1244 . . . . 5 (1 / 2) ∈ (0[,]1)
3736a1i 11 . . . 4 (𝜑 → (1 / 2) ∈ (0[,]1))
38 iitopon 22682 . . . . 5 II ∈ (TopOn‘(0[,]1))
3938a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
409adantr 481 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (𝐹‘1) = (𝐺‘0))
414, 11, 13phtpyi 22783 . . . . . . . 8 ((𝜑𝑦 ∈ (0[,]1)) → ((0𝑀𝑦) = (𝐹‘0) ∧ (1𝑀𝑦) = (𝐹‘1)))
4241simprd 479 . . . . . . 7 ((𝜑𝑦 ∈ (0[,]1)) → (1𝑀𝑦) = (𝐹‘1))
4342adantrl 752 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (1𝑀𝑦) = (𝐹‘1))
448, 12, 16phtpyi 22783 . . . . . . . 8 ((𝜑𝑦 ∈ (0[,]1)) → ((0𝑁𝑦) = (𝐺‘0) ∧ (1𝑁𝑦) = (𝐺‘1)))
4544simpld 475 . . . . . . 7 ((𝜑𝑦 ∈ (0[,]1)) → (0𝑁𝑦) = (𝐺‘0))
4645adantrl 752 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (0𝑁𝑦) = (𝐺‘0))
4740, 43, 463eqtr4d 2666 . . . . 5 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (1𝑀𝑦) = (0𝑁𝑦))
48 simprl 794 . . . . . . . 8 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → 𝑥 = (1 / 2))
4948oveq2d 6666 . . . . . . 7 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (2 · 𝑥) = (2 · (1 / 2)))
50 2cn 11091 . . . . . . . 8 2 ∈ ℂ
51 2ne0 11113 . . . . . . . 8 2 ≠ 0
5250, 51recidi 10756 . . . . . . 7 (2 · (1 / 2)) = 1
5349, 52syl6eq 2672 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (2 · 𝑥) = 1)
5453oveq1d 6665 . . . . 5 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥)𝑀𝑦) = (1𝑀𝑦))
5553oveq1d 6665 . . . . . . 7 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥) − 1) = (1 − 1))
56 1m1e0 11089 . . . . . . 7 (1 − 1) = 0
5755, 56syl6eq 2672 . . . . . 6 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥) − 1) = 0)
5857oveq1d 6665 . . . . 5 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → (((2 · 𝑥) − 1)𝑁𝑦) = (0𝑁𝑦))
5947, 54, 583eqtr4d 2666 . . . 4 ((𝜑 ∧ (𝑥 = (1 / 2) ∧ 𝑦 ∈ (0[,]1))) → ((2 · 𝑥)𝑀𝑦) = (((2 · 𝑥) − 1)𝑁𝑦))
60 retopon 22567 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
61 iccssre 12255 . . . . . . . 8 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
6229, 28, 61mp2an 708 . . . . . . 7 (0[,](1 / 2)) ⊆ ℝ
63 resttopon 20965 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
6460, 62, 63mp2an 708 . . . . . 6 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
6564a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
6665, 39cnmpt1st 21471 . . . . . 6 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
6723iihalf1cn 22731 . . . . . . 7 (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
6867a1i 11 . . . . . 6 (𝜑 → (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
69 oveq2 6658 . . . . . 6 (𝑧 = 𝑥 → (2 · 𝑧) = (2 · 𝑥))
7065, 39, 66, 65, 68, 69cnmpt21 21474 . . . . 5 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ (2 · 𝑥)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
7165, 39cnmpt2nd 21472 . . . . 5 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn II))
724, 11phtpycn 22782 . . . . . 6 (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ⊆ ((II ×t II) Cn 𝐽))
7372, 13sseldd 3604 . . . . 5 (𝜑𝑀 ∈ ((II ×t II) Cn 𝐽))
7465, 39, 70, 71, 73cnmpt22f 21478 . . . 4 (𝜑 → (𝑥 ∈ (0[,](1 / 2)), 𝑦 ∈ (0[,]1) ↦ ((2 · 𝑥)𝑀𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t II) Cn 𝐽))
75 iccssre 12255 . . . . . . . 8 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
7628, 32, 75mp2an 708 . . . . . . 7 ((1 / 2)[,]1) ⊆ ℝ
77 resttopon 20965 . . . . . . 7 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
7860, 76, 77mp2an 708 . . . . . 6 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
7978a1i 11 . . . . 5 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
8079, 39cnmpt1st 21471 . . . . . 6 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
8124iihalf2cn 22733 . . . . . . 7 (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
8281a1i 11 . . . . . 6 (𝜑 → (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
8369oveq1d 6665 . . . . . 6 (𝑧 = 𝑥 → ((2 · 𝑧) − 1) = ((2 · 𝑥) − 1))
8479, 39, 80, 79, 82, 83cnmpt21 21474 . . . . 5 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ ((2 · 𝑥) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
8579, 39cnmpt2nd 21472 . . . . 5 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn II))
868, 12phtpycn 22782 . . . . . 6 (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ⊆ ((II ×t II) Cn 𝐽))
8786, 16sseldd 3604 . . . . 5 (𝜑𝑁 ∈ ((II ×t II) Cn 𝐽))
8879, 39, 84, 85, 87cnmpt22f 21478 . . . 4 (𝜑 → (𝑥 ∈ ((1 / 2)[,]1), 𝑦 ∈ (0[,]1) ↦ (((2 · 𝑥) − 1)𝑁𝑦)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t II) Cn 𝐽))
8922, 23, 24, 25, 26, 27, 37, 39, 59, 74, 88cnmpt2pc 22727 . . 3 (𝜑 → (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦))) ∈ ((II ×t II) Cn 𝐽))
9021, 89syl5eqel 2705 . 2 (𝜑𝑃 ∈ ((II ×t II) Cn 𝐽))
91 simpll 790 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → 𝜑)
92 elii1 22734 . . . . . . . . 9 (𝑠 ∈ (0[,](1 / 2)) ↔ (𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)))
93 iihalf1 22730 . . . . . . . . 9 (𝑠 ∈ (0[,](1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
9492, 93sylbir 225 . . . . . . . 8 ((𝑠 ∈ (0[,]1) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
9594adantll 750 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (2 · 𝑠) ∈ (0[,]1))
964, 11phtpyhtpy 22781 . . . . . . . . 9 (𝜑 → (𝐹(PHtpy‘𝐽)𝐻) ⊆ (𝐹(II Htpy 𝐽)𝐻))
9796, 13sseldd 3604 . . . . . . . 8 (𝜑𝑀 ∈ (𝐹(II Htpy 𝐽)𝐻))
9839, 4, 11, 97htpyi 22773 . . . . . . 7 ((𝜑 ∧ (2 · 𝑠) ∈ (0[,]1)) → (((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)) ∧ ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠))))
9991, 95, 98syl2anc 693 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)) ∧ ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠))))
10099simpld 475 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠)𝑀0) = (𝐹‘(2 · 𝑠)))
101 iftrue 4092 . . . . . 6 (𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = ((2 · 𝑠)𝑀0))
102101adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = ((2 · 𝑠)𝑀0))
103 iftrue 4092 . . . . . 6 (𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))) = (𝐹‘(2 · 𝑠)))
104103adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))) = (𝐹‘(2 · 𝑠)))
105100, 102, 1043eqtr4d 2666 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))))
106 simpll 790 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝜑)
107 elii2 22735 . . . . . . . . 9 ((𝑠 ∈ (0[,]1) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝑠 ∈ ((1 / 2)[,]1))
108107adantll 750 . . . . . . . 8 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → 𝑠 ∈ ((1 / 2)[,]1))
109 iihalf2 22732 . . . . . . . 8 (𝑠 ∈ ((1 / 2)[,]1) → ((2 · 𝑠) − 1) ∈ (0[,]1))
110108, 109syl 17 . . . . . . 7 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠) − 1) ∈ (0[,]1))
1118, 12phtpyhtpy 22781 . . . . . . . . 9 (𝜑 → (𝐺(PHtpy‘𝐽)𝐾) ⊆ (𝐺(II Htpy 𝐽)𝐾))
112111, 16sseldd 3604 . . . . . . . 8 (𝜑𝑁 ∈ (𝐺(II Htpy 𝐽)𝐾))
11339, 8, 12, 112htpyi 22773 . . . . . . 7 ((𝜑 ∧ ((2 · 𝑠) − 1) ∈ (0[,]1)) → ((((2 · 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)) ∧ (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1))))
114106, 110, 113syl2anc 693 . . . . . 6 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → ((((2 · 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)) ∧ (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1))))
115114simpld 475 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠) − 1)𝑁0) = (𝐺‘((2 · 𝑠) − 1)))
116 iffalse 4095 . . . . . 6 𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = (((2 · 𝑠) − 1)𝑁0))
117116adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = (((2 · 𝑠) − 1)𝑁0))
118 iffalse 4095 . . . . . 6 𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))) = (𝐺‘((2 · 𝑠) − 1)))
119118adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))) = (𝐺‘((2 · 𝑠) − 1)))
120115, 117, 1193eqtr4d 2666 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))))
121105, 120pm2.61dan 832 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))))
122 simpr 477 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
123 0elunit 12290 . . . 4 0 ∈ (0[,]1)
124 simpl 473 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑥 = 𝑠)
125124breq1d 4663 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (𝑥 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
126124oveq2d 6666 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → (2 · 𝑥) = (2 · 𝑠))
127 simpr 477 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 = 0)
128126, 127oveq12d 6668 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → ((2 · 𝑥)𝑀𝑦) = ((2 · 𝑠)𝑀0))
129126oveq1d 6665 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → ((2 · 𝑥) − 1) = ((2 · 𝑠) − 1))
130129, 127oveq12d 6668 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (((2 · 𝑥) − 1)𝑁𝑦) = (((2 · 𝑠) − 1)𝑁0))
131125, 128, 130ifbieq12d 4113 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)))
132 ovex 6678 . . . . . 6 ((2 · 𝑠)𝑀0) ∈ V
133 ovex 6678 . . . . . 6 (((2 · 𝑠) − 1)𝑁0) ∈ V
134132, 133ifex 4156 . . . . 5 if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)) ∈ V
135131, 21, 134ovmpt2a 6791 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → (𝑠𝑃0) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)))
136122, 123, 135sylancl 694 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃0) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀0), (((2 · 𝑠) − 1)𝑁0)))
1374, 8pcovalg 22812 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑠) = if(𝑠 ≤ (1 / 2), (𝐹‘(2 · 𝑠)), (𝐺‘((2 · 𝑠) − 1))))
138121, 136, 1373eqtr4d 2666 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃0) = ((𝐹(*𝑝𝐽)𝐺)‘𝑠))
13999simprd 479 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → ((2 · 𝑠)𝑀1) = (𝐻‘(2 · 𝑠)))
140 iftrue 4092 . . . . . 6 (𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = ((2 · 𝑠)𝑀1))
141140adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = ((2 · 𝑠)𝑀1))
142 iftrue 4092 . . . . . 6 (𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))) = (𝐻‘(2 · 𝑠)))
143142adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))) = (𝐻‘(2 · 𝑠)))
144139, 141, 1433eqtr4d 2666 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))))
145114simprd 479 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → (((2 · 𝑠) − 1)𝑁1) = (𝐾‘((2 · 𝑠) − 1)))
146 iffalse 4095 . . . . . 6 𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = (((2 · 𝑠) − 1)𝑁1))
147146adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = (((2 · 𝑠) − 1)𝑁1))
148 iffalse 4095 . . . . . 6 𝑠 ≤ (1 / 2) → if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))) = (𝐾‘((2 · 𝑠) − 1)))
149148adantl 482 . . . . 5 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))) = (𝐾‘((2 · 𝑠) − 1)))
150145, 147, 1493eqtr4d 2666 . . . 4 (((𝜑𝑠 ∈ (0[,]1)) ∧ ¬ 𝑠 ≤ (1 / 2)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))))
151144, 150pm2.61dan 832 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))))
152 1elunit 12291 . . . 4 1 ∈ (0[,]1)
153 simpl 473 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → 𝑥 = 𝑠)
154153breq1d 4663 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (𝑥 ≤ (1 / 2) ↔ 𝑠 ≤ (1 / 2)))
155153oveq2d 6666 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → (2 · 𝑥) = (2 · 𝑠))
156 simpr 477 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → 𝑦 = 1)
157155, 156oveq12d 6668 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑥)𝑀𝑦) = ((2 · 𝑠)𝑀1))
158155oveq1d 6665 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑥) − 1) = ((2 · 𝑠) − 1))
159158, 156oveq12d 6668 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (((2 · 𝑥) − 1)𝑁𝑦) = (((2 · 𝑠) − 1)𝑁1))
160154, 157, 159ifbieq12d 4113 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)))
161 ovex 6678 . . . . . 6 ((2 · 𝑠)𝑀1) ∈ V
162 ovex 6678 . . . . . 6 (((2 · 𝑠) − 1)𝑁1) ∈ V
163161, 162ifex 4156 . . . . 5 if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)) ∈ V
164160, 21, 163ovmpt2a 6791 . . . 4 ((𝑠 ∈ (0[,]1) ∧ 1 ∈ (0[,]1)) → (𝑠𝑃1) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)))
165122, 152, 164sylancl 694 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃1) = if(𝑠 ≤ (1 / 2), ((2 · 𝑠)𝑀1), (((2 · 𝑠) − 1)𝑁1)))
16611, 12pcovalg 22812 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐻(*𝑝𝐽)𝐾)‘𝑠) = if(𝑠 ≤ (1 / 2), (𝐻‘(2 · 𝑠)), (𝐾‘((2 · 𝑠) − 1))))
167151, 165, 1663eqtr4d 2666 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (𝑠𝑃1) = ((𝐻(*𝑝𝐽)𝐾)‘𝑠))
1684, 11, 13phtpyi 22783 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝑀𝑠) = (𝐹‘0) ∧ (1𝑀𝑠) = (𝐹‘1)))
169168simpld 475 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑀𝑠) = (𝐹‘0))
170 simpl 473 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 = 0)
171170, 31syl6eqbr 4692 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑥 ≤ (1 / 2))
172171iftrued 4094 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = ((2 · 𝑥)𝑀𝑦))
173170oveq2d 6666 . . . . . . . 8 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = (2 · 0))
174 2t0e0 11183 . . . . . . . 8 (2 · 0) = 0
175173, 174syl6eq 2672 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = 0)
176 simpr 477 . . . . . . 7 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
177175, 176oveq12d 6668 . . . . . 6 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → ((2 · 𝑥)𝑀𝑦) = (0𝑀𝑠))
178172, 177eqtrd 2656 . . . . 5 ((𝑥 = 0 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (0𝑀𝑠))
179 ovex 6678 . . . . 5 (0𝑀𝑠) ∈ V
180178, 21, 179ovmpt2a 6791 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = (0𝑀𝑠))
181123, 122, 180sylancr 695 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = (0𝑀𝑠))
1824, 8pco0 22814 . . . 4 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘0))
183182adantr 481 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘0) = (𝐹‘0))
184169, 181, 1833eqtr4d 2666 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝑃𝑠) = ((𝐹(*𝑝𝐽)𝐺)‘0))
1858, 12, 16phtpyi 22783 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝑁𝑠) = (𝐺‘0) ∧ (1𝑁𝑠) = (𝐺‘1)))
186185simprd 479 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑁𝑠) = (𝐺‘1))
18728, 32ltnlei 10158 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
18833, 187mpbi 220 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
189 simpl 473 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑥 = 1)
190189breq1d 4663 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (𝑥 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
191188, 190mtbiri 317 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ¬ 𝑥 ≤ (1 / 2))
192191iffalsed 4097 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (((2 · 𝑥) − 1)𝑁𝑦))
193189oveq2d 6666 . . . . . . . . . 10 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = (2 · 1))
194 2t1e2 11176 . . . . . . . . . 10 (2 · 1) = 2
195193, 194syl6eq 2672 . . . . . . . . 9 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (2 · 𝑥) = 2)
196195oveq1d 6665 . . . . . . . 8 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑥) − 1) = (2 − 1))
197 2m1e1 11135 . . . . . . . 8 (2 − 1) = 1
198196, 197syl6eq 2672 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → ((2 · 𝑥) − 1) = 1)
199 simpr 477 . . . . . . 7 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → 𝑦 = 𝑠)
200198, 199oveq12d 6668 . . . . . 6 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → (((2 · 𝑥) − 1)𝑁𝑦) = (1𝑁𝑠))
201192, 200eqtrd 2656 . . . . 5 ((𝑥 = 1 ∧ 𝑦 = 𝑠) → if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦)) = (1𝑁𝑠))
202 ovex 6678 . . . . 5 (1𝑁𝑠) ∈ V
203201, 21, 202ovmpt2a 6791 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = (1𝑁𝑠))
204152, 122, 203sylancr 695 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = (1𝑁𝑠))
2054, 8pco1 22815 . . . 4 (𝜑 → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))
206205adantr 481 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘1) = (𝐺‘1))
207186, 204, 2063eqtr4d 2666 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝑃𝑠) = ((𝐹(*𝑝𝐽)𝐺)‘1))
20810, 20, 90, 138, 167, 184, 207isphtpy2d 22786 1 (𝜑𝑃 ∈ ((𝐹(*𝑝𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝𝐽)𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wss 3574  c0 3915  ifcif 4086   class class class wbr 4653  cmpt 4729  ran crn 5115  cfv 5888  (class class class)co 6650  cmpt2 6652  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  (,)cioo 12175  [,]cicc 12178  t crest 16081  topGenctg 16098  TopOnctopon 20715   Cn ccn 21028   ×t ctx 21363  IIcii 22678   Htpy chtpy 22766  PHtpycphtpy 22767  phcphtpc 22768  *𝑝cpco 22800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pco 22805
This theorem is referenced by:  pcohtpy  22820
  Copyright terms: Public domain W3C validator