MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphtpc Structured version   Visualization version   Unicode version

Theorem isphtpc 22793
Description: The relation "is path homotopic to". (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Sep-2015.)
Assertion
Ref Expression
isphtpc  |-  ( F (  ~=ph  `  J ) G  <->  ( F  e.  ( II  Cn  J
)  /\  G  e.  ( II  Cn  J
)  /\  ( F
( PHtpy `  J ) G )  =/=  (/) ) )

Proof of Theorem isphtpc
Dummy variables  f 
g  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4654 . . 3  |-  ( F (  ~=ph  `  J ) G  <->  <. F ,  G >.  e.  (  ~=ph  `  J
) )
2 df-phtpc 22791 . . . . 5  |-  ~=ph  =  ( j  e.  Top  |->  {
<. f ,  g >.  |  ( { f ,  g }  C_  ( II  Cn  j
)  /\  ( f
( PHtpy `  j )
g )  =/=  (/) ) } )
32dmmptss 5631 . . . 4  |-  dom  ~=ph  C_  Top
4 elfvdm 6220 . . . 4  |-  ( <. F ,  G >.  e.  (  ~=ph  `  J )  ->  J  e.  dom  ~=ph 
)
53, 4sseldi 3601 . . 3  |-  ( <. F ,  G >.  e.  (  ~=ph  `  J )  ->  J  e.  Top )
61, 5sylbi 207 . 2  |-  ( F (  ~=ph  `  J ) G  ->  J  e.  Top )
7 cntop2 21045 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  Top )
873ad2ant1 1082 . 2  |-  ( ( F  e.  ( II 
Cn  J )  /\  G  e.  ( II  Cn  J )  /\  ( F ( PHtpy `  J
) G )  =/=  (/) )  ->  J  e. 
Top )
9 oveq2 6658 . . . . . . . . 9  |-  ( j  =  J  ->  (
II  Cn  j )  =  ( II  Cn  J ) )
109sseq2d 3633 . . . . . . . 8  |-  ( j  =  J  ->  ( { f ,  g }  C_  ( II  Cn  j )  <->  { f ,  g }  C_  ( II  Cn  J
) ) )
11 vex 3203 . . . . . . . . 9  |-  f  e. 
_V
12 vex 3203 . . . . . . . . 9  |-  g  e. 
_V
1311, 12prss 4351 . . . . . . . 8  |-  ( ( f  e.  ( II 
Cn  J )  /\  g  e.  ( II  Cn  J ) )  <->  { f ,  g }  C_  ( II  Cn  J
) )
1410, 13syl6bbr 278 . . . . . . 7  |-  ( j  =  J  ->  ( { f ,  g }  C_  ( II  Cn  j )  <->  ( f  e.  ( II  Cn  J
)  /\  g  e.  ( II  Cn  J
) ) ) )
15 fveq2 6191 . . . . . . . . 9  |-  ( j  =  J  ->  ( PHtpy `  j )  =  ( PHtpy `  J )
)
1615oveqd 6667 . . . . . . . 8  |-  ( j  =  J  ->  (
f ( PHtpy `  j
) g )  =  ( f ( PHtpy `  J ) g ) )
1716neeq1d 2853 . . . . . . 7  |-  ( j  =  J  ->  (
( f ( PHtpy `  j ) g )  =/=  (/)  <->  ( f (
PHtpy `  J ) g )  =/=  (/) ) )
1814, 17anbi12d 747 . . . . . 6  |-  ( j  =  J  ->  (
( { f ,  g }  C_  (
II  Cn  j )  /\  ( f ( PHtpy `  j ) g )  =/=  (/) )  <->  ( (
f  e.  ( II 
Cn  J )  /\  g  e.  ( II  Cn  J ) )  /\  ( f ( PHtpy `  J ) g )  =/=  (/) ) ) )
1918opabbidv 4716 . . . . 5  |-  ( j  =  J  ->  { <. f ,  g >.  |  ( { f ,  g }  C_  ( II  Cn  j )  /\  (
f ( PHtpy `  j
) g )  =/=  (/) ) }  =  { <. f ,  g >.  |  ( ( f  e.  ( II  Cn  J )  /\  g  e.  ( II  Cn  J
) )  /\  (
f ( PHtpy `  J
) g )  =/=  (/) ) } )
20 ovex 6678 . . . . . . 7  |-  ( II 
Cn  J )  e. 
_V
2120, 20xpex 6962 . . . . . 6  |-  ( ( II  Cn  J )  X.  ( II  Cn  J ) )  e. 
_V
22 opabssxp 5193 . . . . . 6  |-  { <. f ,  g >.  |  ( ( f  e.  ( II  Cn  J )  /\  g  e.  ( II  Cn  J ) )  /\  ( f ( PHtpy `  J )
g )  =/=  (/) ) } 
C_  ( ( II 
Cn  J )  X.  ( II  Cn  J
) )
2321, 22ssexi 4803 . . . . 5  |-  { <. f ,  g >.  |  ( ( f  e.  ( II  Cn  J )  /\  g  e.  ( II  Cn  J ) )  /\  ( f ( PHtpy `  J )
g )  =/=  (/) ) }  e.  _V
2419, 2, 23fvmpt 6282 . . . 4  |-  ( J  e.  Top  ->  (  ~=ph  `  J )  =  { <. f ,  g >.  |  ( ( f  e.  ( II  Cn  J )  /\  g  e.  ( II  Cn  J
) )  /\  (
f ( PHtpy `  J
) g )  =/=  (/) ) } )
2524breqd 4664 . . 3  |-  ( J  e.  Top  ->  ( F (  ~=ph  `  J
) G  <->  F { <. f ,  g >.  |  ( ( f  e.  ( II  Cn  J )  /\  g  e.  ( II  Cn  J
) )  /\  (
f ( PHtpy `  J
) g )  =/=  (/) ) } G ) )
26 oveq12 6659 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f ( PHtpy `  J ) g )  =  ( F (
PHtpy `  J ) G ) )
2726neeq1d 2853 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f (
PHtpy `  J ) g )  =/=  (/)  <->  ( F
( PHtpy `  J ) G )  =/=  (/) ) )
28 eqid 2622 . . . . 5  |-  { <. f ,  g >.  |  ( ( f  e.  ( II  Cn  J )  /\  g  e.  ( II  Cn  J ) )  /\  ( f ( PHtpy `  J )
g )  =/=  (/) ) }  =  { <. f ,  g >.  |  ( ( f  e.  ( II  Cn  J )  /\  g  e.  ( II  Cn  J ) )  /\  ( f ( PHtpy `  J )
g )  =/=  (/) ) }
2927, 28brab2a 5194 . . . 4  |-  ( F { <. f ,  g
>.  |  ( (
f  e.  ( II 
Cn  J )  /\  g  e.  ( II  Cn  J ) )  /\  ( f ( PHtpy `  J ) g )  =/=  (/) ) } G  <->  ( ( F  e.  ( II  Cn  J )  /\  G  e.  ( II  Cn  J ) )  /\  ( F ( PHtpy `  J ) G )  =/=  (/) ) )
30 df-3an 1039 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  G  e.  ( II  Cn  J )  /\  ( F ( PHtpy `  J
) G )  =/=  (/) )  <->  ( ( F  e.  ( II  Cn  J )  /\  G  e.  ( II  Cn  J
) )  /\  ( F ( PHtpy `  J
) G )  =/=  (/) ) )
3129, 30bitr4i 267 . . 3  |-  ( F { <. f ,  g
>.  |  ( (
f  e.  ( II 
Cn  J )  /\  g  e.  ( II  Cn  J ) )  /\  ( f ( PHtpy `  J ) g )  =/=  (/) ) } G  <->  ( F  e.  ( II 
Cn  J )  /\  G  e.  ( II  Cn  J )  /\  ( F ( PHtpy `  J
) G )  =/=  (/) ) )
3225, 31syl6bb 276 . 2  |-  ( J  e.  Top  ->  ( F (  ~=ph  `  J
) G  <->  ( F  e.  ( II  Cn  J
)  /\  G  e.  ( II  Cn  J
)  /\  ( F
( PHtpy `  J ) G )  =/=  (/) ) ) )
336, 8, 32pm5.21nii 368 1  |-  ( F (  ~=ph  `  J ) G  <->  ( F  e.  ( II  Cn  J
)  /\  G  e.  ( II  Cn  J
)  /\  ( F
( PHtpy `  J ) G )  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915   {cpr 4179   <.cop 4183   class class class wbr 4653   {copab 4712    X. cxp 5112   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Topctop 20698    Cn ccn 21028   IIcii 22678   PHtpycphtpy 22767    ~=ph cphtpc 22768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-top 20699  df-topon 20716  df-cn 21031  df-phtpc 22791
This theorem is referenced by:  phtpcer  22794  phtpcerOLD  22795  phtpc01  22796  reparpht  22798  phtpcco2  22799  pcohtpylem  22819  pcohtpy  22820  pcorevlem  22826  pi1blem  22839  txsconnlem  31222  txsconn  31223  cvxsconn  31225  cvmliftpht  31300
  Copyright terms: Public domain W3C validator