![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixxf | Structured version Visualization version GIF version |
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
Ref | Expression |
---|---|
ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
Ref | Expression |
---|---|
ixxf | ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3687 | . . . 4 ⊢ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)} ⊆ ℝ* | |
2 | xrex 11829 | . . . . 5 ⊢ ℝ* ∈ V | |
3 | 2 | elpw2 4828 | . . . 4 ⊢ ({𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)} ∈ 𝒫 ℝ* ↔ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)} ⊆ ℝ*) |
4 | 1, 3 | mpbir 221 | . . 3 ⊢ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)} ∈ 𝒫 ℝ* |
5 | 4 | rgen2w 2925 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)} ∈ 𝒫 ℝ* |
6 | ixx.1 | . . 3 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
7 | 6 | fmpt2 7237 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)} ∈ 𝒫 ℝ* ↔ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*) |
8 | 5, 7 | mpbi 220 | 1 ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 ⊆ wss 3574 𝒫 cpw 4158 class class class wbr 4653 × cxp 5112 ⟶wf 5884 ↦ cmpt2 6652 ℝ*cxr 10073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-xr 10078 |
This theorem is referenced by: ixxex 12186 ixxssxr 12187 elixx3g 12188 ndmioo 12202 iccf 12272 iocpnfordt 21019 icomnfordt 21020 tpr2rico 29958 icoreresf 33200 icoreelrn 33209 relowlpssretop 33212 dmico 39792 |
Copyright terms: Public domain | W3C validator |