MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixx1 Structured version   Visualization version   GIF version

Theorem elixx1 12184
Description: Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
elixx1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐶,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem elixx1
StepHypRef Expression
1 ixx.1 . . . 4 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
21ixxval 12183 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)})
32eleq2d 2687 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ 𝐶 ∈ {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)}))
4 breq2 4657 . . . . 5 (𝑧 = 𝐶 → (𝐴𝑅𝑧𝐴𝑅𝐶))
5 breq1 4656 . . . . 5 (𝑧 = 𝐶 → (𝑧𝑆𝐵𝐶𝑆𝐵))
64, 5anbi12d 747 . . . 4 (𝑧 = 𝐶 → ((𝐴𝑅𝑧𝑧𝑆𝐵) ↔ (𝐴𝑅𝐶𝐶𝑆𝐵)))
76elrab 3363 . . 3 (𝐶 ∈ {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)} ↔ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))
8 3anass 1042 . . 3 ((𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵) ↔ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶𝐶𝑆𝐵)))
97, 8bitr4i 267 . 2 (𝐶 ∈ {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)} ↔ (𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵))
103, 9syl6bb 276 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝑅𝐶𝐶𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916   class class class wbr 4653  (class class class)co 6650  cmpt2 6652  *cxr 10073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-xr 10078
This theorem is referenced by:  elixx3g  12188  ixxssixx  12189  ixxdisj  12190  ixxun  12191  ixxss1  12193  ixxss2  12194  ixxss12  12195  ixxub  12196  ixxlb  12197  elioo1  12215  elioc1  12217  elico1  12218  elicc1  12219
  Copyright terms: Public domain W3C validator