![]() |
Metamath
Proof Explorer Theorem List (p. 122 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | rexmul 12101 | The extended real multiplication when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵)) | ||
Theorem | xmulf 12102 | The extended real multiplication operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.) |
⊢ ·e :(ℝ* × ℝ*)⟶ℝ* | ||
Theorem | xmulcl 12103 | Closure of extended real multiplication. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ·e 𝐵) ∈ ℝ*) | ||
Theorem | xmulpnf1 12104 | Multiplication by plus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞) | ||
Theorem | xmulpnf2 12105 | Multiplication by plus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (+∞ ·e 𝐴) = +∞) | ||
Theorem | xmulmnf1 12106 | Multiplication by minus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e -∞) = -∞) | ||
Theorem | xmulmnf2 12107 | Multiplication by minus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (-∞ ·e 𝐴) = -∞) | ||
Theorem | xmulpnf1n 12108 | Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (𝐴 ·e +∞) = -∞) | ||
Theorem | xmulid1 12109 | Extended real version of mulid1 10037. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴) | ||
Theorem | xmulid2 12110 | Extended real version of mulid2 10038. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (1 ·e 𝐴) = 𝐴) | ||
Theorem | xmulm1 12111 | Extended real version of mulm1 10471. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (-1 ·e 𝐴) = -𝑒𝐴) | ||
Theorem | xmulasslem2 12112 | Lemma for xmulass 12117. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((0 < 𝐴 ∧ 𝐴 = -∞) → 𝜑) | ||
Theorem | xmulgt0 12113 | Extended real version of mulgt0 10115. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵)) → 0 < (𝐴 ·e 𝐵)) | ||
Theorem | xmulge0 12114 | Extended real version of mulge0 10546. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 ·e 𝐵)) | ||
Theorem | xmulasslem 12115* | Lemma for xmulass 12117. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝑥 = 𝐷 → (𝜓 ↔ 𝑋 = 𝑌)) & ⊢ (𝑥 = -𝑒𝐷 → (𝜓 ↔ 𝐸 = 𝐹)) & ⊢ (𝜑 → 𝑋 ∈ ℝ*) & ⊢ (𝜑 → 𝑌 ∈ ℝ*) & ⊢ (𝜑 → 𝐷 ∈ ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ 0 < 𝑥)) → 𝜓) & ⊢ (𝜑 → (𝑥 = 0 → 𝜓)) & ⊢ (𝜑 → 𝐸 = -𝑒𝑋) & ⊢ (𝜑 → 𝐹 = -𝑒𝑌) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | xmulasslem3 12116 | Lemma for xmulass 12117. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 < 𝐶)) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶))) | ||
Theorem | xmulass 12117 | Associativity of the extended real multiplication operation. Surprisingly, there are no restrictions on the values, unlike xaddass 12079 which has to avoid the "undefined" combinations +∞ +𝑒 -∞ and -∞ +𝑒 +∞. The equivalent "undefined" expression here would be 0 ·e +∞, but since this is defined to equal 0 any zeroes in the expression make the whole thing evaluate to zero (on both sides), thus establishing the identity in this case. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ·e 𝐵) ·e 𝐶) = (𝐴 ·e (𝐵 ·e 𝐶))) | ||
Theorem | xlemul1a 12118 | Extended real version of lemul1a 10877. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)) | ||
Theorem | xlemul2a 12119 | Extended real version of lemul2a 10878. (Contributed by Mario Carneiro, 8-Sep-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐶 ·e 𝐴) ≤ (𝐶 ·e 𝐵)) | ||
Theorem | xlemul1 12120 | Extended real version of lemul1 10875. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))) | ||
Theorem | xlemul2 12121 | Extended real version of lemul2 10876. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐶 ·e 𝐴) ≤ (𝐶 ·e 𝐵))) | ||
Theorem | xltmul1 12122 | Extended real version of ltmul1 10873. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐴 ·e 𝐶) < (𝐵 ·e 𝐶))) | ||
Theorem | xltmul2 12123 | Extended real version of ltmul2 10874. (Contributed by Mario Carneiro, 8-Sep-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ+) → (𝐴 < 𝐵 ↔ (𝐶 ·e 𝐴) < (𝐶 ·e 𝐵))) | ||
Theorem | xadddilem 12124 | Lemma for xadddi 12125. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))) | ||
Theorem | xadddi 12125 | Distributive property for extended real addition and multiplication. Like xaddass 12079, this has an unusual domain of correctness due to counterexamples like (+∞ · (2 − 1)) = -∞ ≠ ((+∞ · 2) − (+∞ · 1)) = (+∞ − +∞) = 0. In this theorem we show that if the multiplier is real then everything works as expected. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))) | ||
Theorem | xadddir 12126 | Commuted version of xadddi 12125. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶))) | ||
Theorem | xadddi2 12127 | The assumption that the multiplier be real in xadddi 12125 can be relaxed if the addends have the same sign. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶))) | ||
Theorem | xadddi2r 12128 | Commuted version of xadddi2 12127. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶))) | ||
Theorem | x2times 12129 | Extended real version of 2times 11145. (Contributed by Mario Carneiro, 20-Aug-2015.) |
⊢ (𝐴 ∈ ℝ* → (2 ·e 𝐴) = (𝐴 +𝑒 𝐴)) | ||
Theorem | xnegcld 12130 | Closure of extended real negative. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) ⇒ ⊢ (𝜑 → -𝑒𝐴 ∈ ℝ*) | ||
Theorem | xaddcld 12131 | The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 +𝑒 𝐵) ∈ ℝ*) | ||
Theorem | xmulcld 12132 | Closure of extended real multiplication. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ ℝ*) ⇒ ⊢ (𝜑 → (𝐴 ·e 𝐵) ∈ ℝ*) | ||
Theorem | xadd4d 12133 | Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 10264. (Contributed by Alexander van der Vekens, 21-Dec-2017.) |
⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) & ⊢ (𝜑 → (𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞)) & ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞)) & ⊢ (𝜑 → (𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞)) ⇒ ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) | ||
Theorem | xnn0add4d 12134 | Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d 12133. (Contributed by AV, 12-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0*) & ⊢ (𝜑 → 𝐵 ∈ ℕ0*) & ⊢ (𝜑 → 𝐶 ∈ ℕ0*) & ⊢ (𝜑 → 𝐷 ∈ ℕ0*) ⇒ ⊢ (𝜑 → ((𝐴 +𝑒 𝐵) +𝑒 (𝐶 +𝑒 𝐷)) = ((𝐴 +𝑒 𝐶) +𝑒 (𝐵 +𝑒 𝐷))) | ||
Theorem | xrsupexmnf 12135* | Adding minus infinity to a set does not affect the existence of its supremum. (Contributed by NM, 26-Oct-2005.) |
⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))) | ||
Theorem | xrinfmexpnf 12136* | Adding plus infinity to a set does not affect the existence of its infimum. (Contributed by NM, 19-Jan-2006.) |
⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦))) | ||
Theorem | xrsupsslem 12137* | Lemma for xrsupss 12139. (Contributed by NM, 25-Oct-2005.) |
⊢ ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
Theorem | xrinfmsslem 12138* | Lemma for xrinfmss 12140. (Contributed by NM, 19-Jan-2006.) |
⊢ ((𝐴 ⊆ ℝ* ∧ (𝐴 ⊆ ℝ ∨ -∞ ∈ 𝐴)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
Theorem | xrsupss 12139* | Any subset of extended reals has a supremum. (Contributed by NM, 25-Oct-2005.) |
⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) | ||
Theorem | xrinfmss 12140* | Any subset of extended reals has an infimum. (Contributed by NM, 25-Oct-2005.) |
⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | ||
Theorem | xrinfmss2 12141* | Any subset of extended reals has an infimum. (Contributed by Mario Carneiro, 16-Mar-2014.) |
⊢ (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥◡ < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦◡ < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦◡ < 𝑧))) | ||
Theorem | xrub 12142* | By quantifying only over reals, we can specify any extended real upper bound for any set of extended reals. (Contributed by NM, 9-Apr-2006.) |
⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦) ↔ ∀𝑥 ∈ ℝ* (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) | ||
Theorem | supxr 12143* | The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006.) (Revised by Mario Carneiro, 21-Apr-2015.) |
⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (∀𝑥 ∈ 𝐴 ¬ 𝐵 < 𝑥 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵) | ||
Theorem | supxr2 12144* | The supremum of a set of extended reals. (Contributed by NM, 9-Apr-2006.) |
⊢ (((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐵 ∧ ∀𝑥 ∈ ℝ (𝑥 < 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 < 𝑦))) → sup(𝐴, ℝ*, < ) = 𝐵) | ||
Theorem | supxrcl 12145 | The supremum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 24-Oct-2005.) |
⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | ||
Theorem | supxrun 12146 | The supremum of the union of two sets of extended reals equals the largest of their suprema. (Contributed by NM, 19-Jan-2006.) |
⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ⊆ ℝ* ∧ sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) → sup((𝐴 ∪ 𝐵), ℝ*, < ) = sup(𝐵, ℝ*, < )) | ||
Theorem | supxrmnf 12147 | Adding minus infinity to a set does not affect its supremum. (Contributed by NM, 19-Jan-2006.) |
⊢ (𝐴 ⊆ ℝ* → sup((𝐴 ∪ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < )) | ||
Theorem | supxrpnf 12148 | The supremum of a set of extended reals containing plus infinity is plus infinity. (Contributed by NM, 15-Oct-2005.) |
⊢ ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞) | ||
Theorem | supxrunb1 12149* | The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.) |
⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞)) | ||
Theorem | supxrunb2 12150* | The supremum of an unbounded-above set of extended reals is plus infinity. (Contributed by NM, 19-Jan-2006.) |
⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞)) | ||
Theorem | supxrbnd1 12151* | The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.) |
⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 < 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞)) | ||
Theorem | supxrbnd2 12152* | The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.) |
⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞)) | ||
Theorem | xrsup0 12153 | The supremum of an empty set under the extended reals is minus infinity. (Contributed by NM, 15-Oct-2005.) |
⊢ sup(∅, ℝ*, < ) = -∞ | ||
Theorem | supxrub 12154 | A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by NM, 7-Feb-2006.) |
⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → 𝐵 ≤ sup(𝐴, ℝ*, < )) | ||
Theorem | supxrlub 12155* | The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by Mario Carneiro, 13-Sep-2015.) |
⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < sup(𝐴, ℝ*, < ) ↔ ∃𝑥 ∈ 𝐴 𝐵 < 𝑥)) | ||
Theorem | supxrleub 12156* | The supremum of a set of extended reals is less than or equal to an upper bound. (Contributed by NM, 22-Feb-2006.) (Revised by Mario Carneiro, 6-Sep-2014.) |
⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐵)) | ||
Theorem | supxrre 12157* | The real and extended real suprema match when the real supremum exists. (Contributed by NM, 18-Oct-2005.) (Proof shortened by Mario Carneiro, 7-Sep-2014.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ*, < ) = sup(𝐴, ℝ, < )) | ||
Theorem | supxrbnd 12158 | The supremum of a bounded-above nonempty set of reals is real. (Contributed by NM, 19-Jan-2006.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ sup(𝐴, ℝ*, < ) < +∞) → sup(𝐴, ℝ*, < ) ∈ ℝ) | ||
Theorem | supxrgtmnf 12159 | The supremum of a nonempty set of reals is greater than minus infinity. (Contributed by NM, 2-Feb-2006.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → -∞ < sup(𝐴, ℝ*, < )) | ||
Theorem | supxrre1 12160 | The supremum of a nonempty set of reals is real iff it is less than plus infinity. (Contributed by NM, 5-Feb-2006.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ sup(𝐴, ℝ*, < ) < +∞)) | ||
Theorem | supxrre2 12161 | The supremum of a nonempty set of reals is real iff it is not plus infinity. (Contributed by NM, 5-Feb-2006.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ sup(𝐴, ℝ*, < ) ≠ +∞)) | ||
Theorem | supxrss 12162 | Smaller sets of extended reals have smaller suprema. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) | ||
Theorem | infxrcl 12163 | The infimum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 19-Jan-2006.) (Revised by AV, 5-Sep-2020.) |
⊢ (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*) | ||
Theorem | infxrlb 12164 | A member of a set of extended reals is greater than or equal to the set's infimum. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.) |
⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝐵) | ||
Theorem | infxrgelb 12165* | The infimum of a set of extended reals is greater than or equal to a lower bound. (Contributed by Mario Carneiro, 16-Mar-2014.) (Revised by AV, 5-Sep-2020.) |
⊢ ((𝐴 ⊆ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 ≤ inf(𝐴, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) | ||
Theorem | infxrre 12166* | The real and extended real infima match when the real infimum exists. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 5-Sep-2020.) |
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ, < )) | ||
Theorem | infxrmnf 12167 | The infinimum of a set of extended reals containing minus infinity is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
⊢ ((𝐴 ⊆ ℝ* ∧ -∞ ∈ 𝐴) → inf(𝐴, ℝ*, < ) = -∞) | ||
Theorem | xrinf0 12168 | The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.) |
⊢ inf(∅, ℝ*, < ) = +∞ | ||
Theorem | infxrss 12169 | Larger sets of extended reals have smaller infima. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 13-Sep-2020.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ*) → inf(𝐵, ℝ*, < ) ≤ inf(𝐴, ℝ*, < )) | ||
Theorem | reltre 12170* | For all real numbers there is a smaller real number. (Contributed by AV, 5-Sep-2020.) |
⊢ ∀𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝑦 < 𝑥 | ||
Theorem | rpltrp 12171* | For all positive real numbers there is a smaller positive real number. (Contributed by AV, 5-Sep-2020.) |
⊢ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ 𝑦 < 𝑥 | ||
Theorem | reltxrnmnf 12172* | For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020.) |
⊢ ∀𝑥 ∈ ℝ* (-∞ < 𝑥 → ∃𝑦 ∈ ℝ 𝑦 < 𝑥) | ||
Theorem | infmremnf 12173 | The infimum of the reals is minus infinity. (Contributed by AV, 5-Sep-2020.) |
⊢ inf(ℝ, ℝ*, < ) = -∞ | ||
Theorem | infmrp1 12174 | The infimum of the positive reals is 0. (Contributed by AV, 5-Sep-2020.) |
⊢ inf(ℝ+, ℝ, < ) = 0 | ||
Syntax | cioo 12175 | Extend class notation with the set of open intervals of extended reals. |
class (,) | ||
Syntax | cioc 12176 | Extend class notation with the set of open-below, closed-above intervals of extended reals. |
class (,] | ||
Syntax | cico 12177 | Extend class notation with the set of closed-below, open-above intervals of extended reals. |
class [,) | ||
Syntax | cicc 12178 | Extend class notation with the set of closed intervals of extended reals. |
class [,] | ||
Definition | df-ioo 12179* | Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | ||
Definition | df-ioc 12180* | Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) | ||
Definition | df-ico 12181* | Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | ||
Definition | df-icc 12182* | Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.) |
⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) | ||
Theorem | ixxval 12183* | Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧 ∧ 𝑧𝑆𝐵)}) | ||
Theorem | elixx1 12184* | Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) | ||
Theorem | ixxf 12185* | The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* | ||
Theorem | ixxex 12186* | The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ 𝑂 ∈ V | ||
Theorem | ixxssxr 12187* | The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ (𝐴𝑂𝐵) ⊆ ℝ* | ||
Theorem | elixx3g 12188* | Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by Mario Carneiro, 3-Nov-2013.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) ⇒ ⊢ (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) | ||
Theorem | ixxssixx 12189* | An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴𝑅𝑤 → 𝐴𝑇𝑤)) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤𝑈𝐵)) ⇒ ⊢ (𝐴𝑂𝐵) ⊆ (𝐴𝑃𝐵) | ||
Theorem | ixxdisj 12190* | Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) & ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵)) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴𝑂𝐵) ∩ (𝐵𝑃𝐶)) = ∅) | ||
Theorem | ixxun 12191* | Split an interval into two parts. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) & ⊢ ((𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐵𝑇𝑤 ↔ ¬ 𝑤𝑆𝐵)) & ⊢ 𝑄 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑈𝑦)}) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑆𝐵 ∧ 𝐵𝑋𝐶) → 𝑤𝑈𝐶)) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) ⇒ ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑊𝐵 ∧ 𝐵𝑋𝐶)) → ((𝐴𝑂𝐵) ∪ (𝐵𝑃𝐶)) = (𝐴𝑄𝐶)) | ||
Theorem | ixxin 12192* | Intersection of two intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧 ∧ 𝐶𝑅𝑧))) & ⊢ ((𝑧 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) → (𝑧𝑆if(𝐵 ≤ 𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵 ∧ 𝑧𝑆𝐷))) ⇒ ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) → ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = (if(𝐴 ≤ 𝐶, 𝐶, 𝐴)𝑂if(𝐵 ≤ 𝐷, 𝐵, 𝐷))) | ||
Theorem | ixxss1 12193* | Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐵 ∧ 𝐵𝑇𝑤) → 𝐴𝑅𝑤)) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴𝑊𝐵) → (𝐵𝑃𝐶) ⊆ (𝐴𝑂𝐶)) | ||
Theorem | ixxss2 12194* | Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑇𝑦)}) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝑤𝑇𝐵 ∧ 𝐵𝑊𝐶) → 𝑤𝑆𝐶)) ⇒ ⊢ ((𝐶 ∈ ℝ* ∧ 𝐵𝑊𝐶) → (𝐴𝑃𝐵) ⊆ (𝐴𝑂𝐶)) | ||
Theorem | ixxss12 12195* | Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ 𝑃 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑇𝑧 ∧ 𝑧𝑈𝑦)}) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((𝐴𝑊𝐶 ∧ 𝐶𝑇𝑤) → 𝐴𝑅𝑤)) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑤𝑈𝐷 ∧ 𝐷𝑋𝐵) → 𝑤𝑆𝐵)) ⇒ ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐴𝑊𝐶 ∧ 𝐷𝑋𝐵)) → (𝐶𝑃𝐷) ⊆ (𝐴𝑂𝐵)) | ||
Theorem | ixxub 12196* | Extract the upper bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤𝑆𝐵)) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤 ≤ 𝐵)) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴𝑅𝑤)) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴𝑅𝑤 → 𝐴 ≤ 𝑤)) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → sup((𝐴𝑂𝐵), ℝ*, < ) = 𝐵) | ||
Theorem | ixxlb 12197* | Extract the lower bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by AV, 12-Sep-2020.) |
⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤𝑆𝐵)) & ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤𝑆𝐵 → 𝑤 ≤ 𝐵)) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴𝑅𝑤)) & ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴𝑅𝑤 → 𝐴 ≤ 𝑤)) ⇒ ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) = 𝐴) | ||
Theorem | iooex 12198 | The set of open intervals of extended reals exists. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ (,) ∈ V | ||
Theorem | iooval 12199* | Value of the open interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | ||
Theorem | ioo0 12200 | An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |