MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxin Structured version   Visualization version   GIF version

Theorem ixxin 12192
Description: Intersection of two intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxin.2 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑧 ∈ ℝ*) → (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧𝐶𝑅𝑧)))
ixxin.3 ((𝑧 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))
Assertion
Ref Expression
ixxin (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxin
StepHypRef Expression
1 inrab 3899 . . 3 ({𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)} ∩ {𝑧 ∈ ℝ* ∣ (𝐶𝑅𝑧𝑧𝑆𝐷)}) = {𝑧 ∈ ℝ* ∣ ((𝐴𝑅𝑧𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧𝑧𝑆𝐷))}
2 ixx.1 . . . . 5 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
32ixxval 12183 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)})
42ixxval 12183 . . . 4 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐶𝑂𝐷) = {𝑧 ∈ ℝ* ∣ (𝐶𝑅𝑧𝑧𝑆𝐷)})
53, 4ineqan12d 3816 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = ({𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)} ∩ {𝑧 ∈ ℝ* ∣ (𝐶𝑅𝑧𝑧𝑆𝐷)}))
6 ixxin.2 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑧 ∈ ℝ*) → (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧𝐶𝑅𝑧)))
763expa 1265 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧𝐶𝑅𝑧)))
87adantlr 751 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧𝐶𝑅𝑧)))
9 ixxin.3 . . . . . . . . . 10 ((𝑧 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))
1093expb 1266 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))
1110ancoms 469 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐷 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))
1211adantll 750 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))
138, 12anbi12d 747 . . . . . 6 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → ((if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷)) ↔ ((𝐴𝑅𝑧𝐶𝑅𝑧) ∧ (𝑧𝑆𝐵𝑧𝑆𝐷))))
14 an4 865 . . . . . 6 (((𝐴𝑅𝑧𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧𝑧𝑆𝐷)) ↔ ((𝐴𝑅𝑧𝐶𝑅𝑧) ∧ (𝑧𝑆𝐵𝑧𝑆𝐷)))
1513, 14syl6bbr 278 . . . . 5 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → ((if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷)) ↔ ((𝐴𝑅𝑧𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧𝑧𝑆𝐷))))
1615rabbidva 3188 . . . 4 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) → {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))} = {𝑧 ∈ ℝ* ∣ ((𝐴𝑅𝑧𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧𝑧𝑆𝐷))})
1716an4s 869 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))} = {𝑧 ∈ ℝ* ∣ ((𝐴𝑅𝑧𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧𝑧𝑆𝐷))})
181, 5, 173eqtr4a 2682 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))})
19 ifcl 4130 . . . . 5 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → if(𝐴𝐶, 𝐶, 𝐴) ∈ ℝ*)
2019ancoms 469 . . . 4 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐴𝐶, 𝐶, 𝐴) ∈ ℝ*)
21 ifcl 4130 . . . 4 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → if(𝐵𝐷, 𝐵, 𝐷) ∈ ℝ*)
222ixxval 12183 . . . 4 ((if(𝐴𝐶, 𝐶, 𝐴) ∈ ℝ* ∧ if(𝐵𝐷, 𝐵, 𝐷) ∈ ℝ*) → (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))})
2320, 21, 22syl2an 494 . . 3 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) → (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))})
2423an4s 869 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))})
2518, 24eqtr4d 2659 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  cin 3573  ifcif 4086   class class class wbr 4653  (class class class)co 6650  cmpt2 6652  *cxr 10073  cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-xr 10078
This theorem is referenced by:  iooin  12209  itgspliticc  23603  cvmliftlem10  31276
  Copyright terms: Public domain W3C validator