![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvpss | Structured version Visualization version GIF version |
Description: The covers relation implies proper subset. (cvpss 29144 analog.) (Contributed by NM, 7-Jan-2015.) |
Ref | Expression |
---|---|
lcvfbr.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvfbr.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvfbr.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lcvfbr.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvfbr.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lcvpss.d | ⊢ (𝜑 → 𝑇𝐶𝑈) |
Ref | Expression |
---|---|
lcvpss | ⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvpss.d | . . 3 ⊢ (𝜑 → 𝑇𝐶𝑈) | |
2 | lcvfbr.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lcvfbr.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
4 | lcvfbr.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
5 | lcvfbr.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
6 | lcvfbr.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | 2, 3, 4, 5, 6 | lcvbr 34308 | . . 3 ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)))) |
8 | 1, 7 | mpbid 222 | . 2 ⊢ (𝜑 → (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈))) |
9 | 8 | simpld 475 | 1 ⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 ⊊ wpss 3575 class class class wbr 4653 ‘cfv 5888 LSubSpclss 18932 ⋖L clcv 34305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-lcv 34306 |
This theorem is referenced by: lcvntr 34313 lcvat 34317 lsatcveq0 34319 lsat0cv 34320 lcvexchlem4 34324 lcvexchlem5 34325 lcv1 34328 lsatexch 34330 lsatcvat2 34338 islshpcv 34340 |
Copyright terms: Public domain | W3C validator |