MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsval Structured version   Visualization version   GIF version

Theorem lgsval 25026
Description: Value of the Legendre symbol at an arbitrary integer. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgsval.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
Assertion
Ref Expression
lgsval ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem lgsval
Dummy variables 𝑎 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑁) → 𝑚 = 𝑁)
21eqeq1d 2624 . . 3 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑚 = 0 ↔ 𝑁 = 0))
3 simpl 473 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑁) → 𝑎 = 𝐴)
43oveq1d 6665 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑎↑2) = (𝐴↑2))
54eqeq1d 2624 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑁) → ((𝑎↑2) = 1 ↔ (𝐴↑2) = 1))
65ifbid 4108 . . 3 ((𝑎 = 𝐴𝑚 = 𝑁) → if((𝑎↑2) = 1, 1, 0) = if((𝐴↑2) = 1, 1, 0))
71breq1d 4663 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑚 < 0 ↔ 𝑁 < 0))
83breq1d 4663 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑎 < 0 ↔ 𝐴 < 0))
97, 8anbi12d 747 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑁) → ((𝑚 < 0 ∧ 𝑎 < 0) ↔ (𝑁 < 0 ∧ 𝐴 < 0)))
109ifbid 4108 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑁) → if((𝑚 < 0 ∧ 𝑎 < 0), -1, 1) = if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1))
113breq2d 4665 . . . . . . . . . . . 12 ((𝑎 = 𝐴𝑚 = 𝑁) → (2 ∥ 𝑎 ↔ 2 ∥ 𝐴))
123oveq1d 6665 . . . . . . . . . . . . . 14 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑎 mod 8) = (𝐴 mod 8))
1312eleq1d 2686 . . . . . . . . . . . . 13 ((𝑎 = 𝐴𝑚 = 𝑁) → ((𝑎 mod 8) ∈ {1, 7} ↔ (𝐴 mod 8) ∈ {1, 7}))
1413ifbid 4108 . . . . . . . . . . . 12 ((𝑎 = 𝐴𝑚 = 𝑁) → if((𝑎 mod 8) ∈ {1, 7}, 1, -1) = if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
1511, 14ifbieq2d 4111 . . . . . . . . . . 11 ((𝑎 = 𝐴𝑚 = 𝑁) → if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)) = if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)))
163oveq1d 6665 . . . . . . . . . . . . . 14 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑎↑((𝑛 − 1) / 2)) = (𝐴↑((𝑛 − 1) / 2)))
1716oveq1d 6665 . . . . . . . . . . . . 13 ((𝑎 = 𝐴𝑚 = 𝑁) → ((𝑎↑((𝑛 − 1) / 2)) + 1) = ((𝐴↑((𝑛 − 1) / 2)) + 1))
1817oveq1d 6665 . . . . . . . . . . . 12 ((𝑎 = 𝐴𝑚 = 𝑁) → (((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) = (((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛))
1918oveq1d 6665 . . . . . . . . . . 11 ((𝑎 = 𝐴𝑚 = 𝑁) → ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) = ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))
2015, 19ifeq12d 4106 . . . . . . . . . 10 ((𝑎 = 𝐴𝑚 = 𝑁) → if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) = if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)))
211oveq2d 6666 . . . . . . . . . 10 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑛 pCnt 𝑚) = (𝑛 pCnt 𝑁))
2220, 21oveq12d 6668 . . . . . . . . 9 ((𝑎 = 𝐴𝑚 = 𝑁) → (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)) = (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)))
2322ifeq1d 4104 . . . . . . . 8 ((𝑎 = 𝐴𝑚 = 𝑁) → if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1) = if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
2423mpteq2dv 4745 . . . . . . 7 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)))
25 lgsval.1 . . . . . . 7 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1))
2624, 25syl6eqr 2674 . . . . . 6 ((𝑎 = 𝐴𝑚 = 𝑁) → (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)) = 𝐹)
2726seqeq3d 12809 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑁) → seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1))) = seq1( · , 𝐹))
281fveq2d 6195 . . . . 5 ((𝑎 = 𝐴𝑚 = 𝑁) → (abs‘𝑚) = (abs‘𝑁))
2927, 28fveq12d 6197 . . . 4 ((𝑎 = 𝐴𝑚 = 𝑁) → (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)))‘(abs‘𝑚)) = (seq1( · , 𝐹)‘(abs‘𝑁)))
3010, 29oveq12d 6668 . . 3 ((𝑎 = 𝐴𝑚 = 𝑁) → (if((𝑚 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)))‘(abs‘𝑚))) = (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))))
312, 6, 30ifbieq12d 4113 . 2 ((𝑎 = 𝐴𝑚 = 𝑁) → if(𝑚 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑚 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)))‘(abs‘𝑚)))) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
32 df-lgs 25020 . 2 /L = (𝑎 ∈ ℤ, 𝑚 ∈ ℤ ↦ if(𝑚 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑚 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑚)), 1)))‘(abs‘𝑚)))))
33 1nn0 11308 . . . . 5 1 ∈ ℕ0
34 0nn0 11307 . . . . 5 0 ∈ ℕ0
3533, 34keepel 4155 . . . 4 if((𝐴↑2) = 1, 1, 0) ∈ ℕ0
3635elexi 3213 . . 3 if((𝐴↑2) = 1, 1, 0) ∈ V
37 ovex 6678 . . 3 (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁))) ∈ V
3836, 37ifex 4156 . 2 if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))) ∈ V
3931, 32, 38ovmpt2a 6791 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 /L 𝑁) = if(𝑁 = 0, if((𝐴↑2) = 1, 1, 0), (if((𝑁 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , 𝐹)‘(abs‘𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  ifcif 4086  {cpr 4179   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  2c2 11070  7c7 11075  8c8 11076  0cn0 11292  cz 11377   mod cmo 12668  seqcseq 12801  cexp 12860  abscabs 13974  cdvds 14983  cprime 15385   pCnt cpc 15541   /L clgs 25019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-nn 11021  df-n0 11293  df-seq 12802  df-lgs 25020
This theorem is referenced by:  lgscllem  25029  lgsval2lem  25032  lgs0  25035  lgsval4  25042
  Copyright terms: Public domain W3C validator