MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limomss Structured version   Visualization version   Unicode version

Theorem limomss 7070
Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of [TakeutiZaring] p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
limomss  |-  ( Lim 
A  ->  om  C_  A
)

Proof of Theorem limomss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limord 5784 . 2  |-  ( Lim 
A  ->  Ord  A )
2 ordeleqon 6988 . . 3  |-  ( Ord 
A  <->  ( A  e.  On  \/  A  =  On ) )
3 elom 7068 . . . . . . . . . 10  |-  ( x  e.  om  <->  ( x  e.  On  /\  A. y
( Lim  y  ->  x  e.  y ) ) )
43simprbi 480 . . . . . . . . 9  |-  ( x  e.  om  ->  A. y
( Lim  y  ->  x  e.  y ) )
5 limeq 5735 . . . . . . . . . . 11  |-  ( y  =  A  ->  ( Lim  y  <->  Lim  A ) )
6 eleq2 2690 . . . . . . . . . . 11  |-  ( y  =  A  ->  (
x  e.  y  <->  x  e.  A ) )
75, 6imbi12d 334 . . . . . . . . . 10  |-  ( y  =  A  ->  (
( Lim  y  ->  x  e.  y )  <->  ( Lim  A  ->  x  e.  A
) ) )
87spcgv 3293 . . . . . . . . 9  |-  ( A  e.  On  ->  ( A. y ( Lim  y  ->  x  e.  y )  ->  ( Lim  A  ->  x  e.  A ) ) )
94, 8syl5 34 . . . . . . . 8  |-  ( A  e.  On  ->  (
x  e.  om  ->  ( Lim  A  ->  x  e.  A ) ) )
109com23 86 . . . . . . 7  |-  ( A  e.  On  ->  ( Lim  A  ->  ( x  e.  om  ->  x  e.  A ) ) )
1110imp 445 . . . . . 6  |-  ( ( A  e.  On  /\  Lim  A )  ->  (
x  e.  om  ->  x  e.  A ) )
1211ssrdv 3609 . . . . 5  |-  ( ( A  e.  On  /\  Lim  A )  ->  om  C_  A
)
1312ex 450 . . . 4  |-  ( A  e.  On  ->  ( Lim  A  ->  om  C_  A
) )
14 omsson 7069 . . . . . 6  |-  om  C_  On
15 sseq2 3627 . . . . . 6  |-  ( A  =  On  ->  ( om  C_  A  <->  om  C_  On ) )
1614, 15mpbiri 248 . . . . 5  |-  ( A  =  On  ->  om  C_  A
)
1716a1d 25 . . . 4  |-  ( A  =  On  ->  ( Lim  A  ->  om  C_  A
) )
1813, 17jaoi 394 . . 3  |-  ( ( A  e.  On  \/  A  =  On )  ->  ( Lim  A  ->  om  C_  A ) )
192, 18sylbi 207 . 2  |-  ( Ord 
A  ->  ( Lim  A  ->  om  C_  A ) )
201, 19mpcom 38 1  |-  ( Lim 
A  ->  om  C_  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990    C_ wss 3574   Ord word 5722   Oncon0 5723   Lim wlim 5724   omcom 7065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-om 7066
This theorem is referenced by:  limom  7080  rdg0  7517  frfnom  7530  frsuc  7532  r1fin  8636  rankdmr1  8664  rankeq0b  8723  cardlim  8798  ackbij2  9065  cfom  9086  wunom  9542  inar1  9597
  Copyright terms: Public domain W3C validator