Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincval0 Structured version   Visualization version   GIF version

Theorem lincval0 42204
Description: The value of an empty linear combination. (Contributed by AV, 12-Apr-2019.)
Assertion
Ref Expression
lincval0 (𝑀𝑋 → (∅( linC ‘𝑀)∅) = (0g𝑀))

Proof of Theorem lincval0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 0ex 4790 . . . . 5 ∅ ∈ V
21snid 4208 . . . 4 ∅ ∈ {∅}
3 fvex 6201 . . . . . 6 (Base‘(Scalar‘𝑀)) ∈ V
4 map0e 7895 . . . . . 6 ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑𝑚 ∅) = 1𝑜)
53, 4mp1i 13 . . . . 5 (𝑀𝑋 → ((Base‘(Scalar‘𝑀)) ↑𝑚 ∅) = 1𝑜)
6 df1o2 7572 . . . . 5 1𝑜 = {∅}
75, 6syl6eq 2672 . . . 4 (𝑀𝑋 → ((Base‘(Scalar‘𝑀)) ↑𝑚 ∅) = {∅})
82, 7syl5eleqr 2708 . . 3 (𝑀𝑋 → ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 ∅))
9 0elpw 4834 . . . 4 ∅ ∈ 𝒫 (Base‘𝑀)
109a1i 11 . . 3 (𝑀𝑋 → ∅ ∈ 𝒫 (Base‘𝑀))
11 lincval 42198 . . 3 ((𝑀𝑋 ∧ ∅ ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 ∅) ∧ ∅ ∈ 𝒫 (Base‘𝑀)) → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))))
128, 10, 11mpd3an23 1426 . 2 (𝑀𝑋 → (∅( linC ‘𝑀)∅) = (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))))
13 mpt0 6021 . . . . 5 (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣)) = ∅
1413a1i 11 . . . 4 (𝑀𝑋 → (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣)) = ∅)
1514oveq2d 6666 . . 3 (𝑀𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))) = (𝑀 Σg ∅))
16 eqid 2622 . . . 4 (0g𝑀) = (0g𝑀)
1716gsum0 17278 . . 3 (𝑀 Σg ∅) = (0g𝑀)
1815, 17syl6eq 2672 . 2 (𝑀𝑋 → (𝑀 Σg (𝑣 ∈ ∅ ↦ ((∅‘𝑣)( ·𝑠𝑀)𝑣))) = (0g𝑀))
1912, 18eqtrd 2656 1 (𝑀𝑋 → (∅( linC ‘𝑀)∅) = (0g𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  𝒫 cpw 4158  {csn 4177  cmpt 4729  cfv 5888  (class class class)co 6650  1𝑜c1o 7553  𝑚 cmap 7857  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100   Σg cgsu 16101   linC clinc 42193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-map 7859  df-seq 12802  df-gsum 16103  df-linc 42195
This theorem is referenced by:  lco0  42216
  Copyright terms: Public domain W3C validator