MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyrest Structured version   Visualization version   GIF version

Theorem llyrest 21288
Description: An open subspace of a locally 𝐴 space is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyrest ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ Locally 𝐴)

Proof of Theorem llyrest
Dummy variables 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 21275 . . 3 (𝐽 ∈ Locally 𝐴𝐽 ∈ Top)
2 resttop 20964 . . 3 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝐽t 𝐵) ∈ Top)
31, 2sylan 488 . 2 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ Top)
4 restopn2 20981 . . . . 5 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) ↔ (𝑥𝐽𝑥𝐵)))
51, 4sylan 488 . . . 4 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) ↔ (𝑥𝐽𝑥𝐵)))
6 simp1l 1085 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝐽 ∈ Locally 𝐴)
7 simp2l 1087 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝑥𝐽)
8 simp3 1063 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝑦𝑥)
9 llyi 21277 . . . . . . . . 9 ((𝐽 ∈ Locally 𝐴𝑥𝐽𝑦𝑥) → ∃𝑣𝐽 (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))
106, 7, 8, 9syl3anc 1326 . . . . . . . 8 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ∃𝑣𝐽 (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))
11 simprl 794 . . . . . . . . . . . . 13 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣𝐽)
12 simprr1 1109 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣𝑥)
13 simpl2r 1115 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑥𝐵)
1412, 13sstrd 3613 . . . . . . . . . . . . 13 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣𝐵)
156, 1syl 17 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → 𝐽 ∈ Top)
1615adantr 481 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝐽 ∈ Top)
17 simpl1r 1113 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝐵𝐽)
18 restopn2 20981 . . . . . . . . . . . . . 14 ((𝐽 ∈ Top ∧ 𝐵𝐽) → (𝑣 ∈ (𝐽t 𝐵) ↔ (𝑣𝐽𝑣𝐵)))
1916, 17, 18syl2anc 693 . . . . . . . . . . . . 13 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (𝐽t 𝐵) ↔ (𝑣𝐽𝑣𝐵)))
2011, 14, 19mpbir2and 957 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (𝐽t 𝐵))
21 selpw 4165 . . . . . . . . . . . . 13 (𝑣 ∈ 𝒫 𝑥𝑣𝑥)
2212, 21sylibr 224 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥)
2320, 22elind 3798 . . . . . . . . . . 11 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥))
24 simprr2 1110 . . . . . . . . . . 11 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → 𝑦𝑣)
25 restabs 20969 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝑣𝐵𝐵𝐽) → ((𝐽t 𝐵) ↾t 𝑣) = (𝐽t 𝑣))
2616, 14, 17, 25syl3anc 1326 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → ((𝐽t 𝐵) ↾t 𝑣) = (𝐽t 𝑣))
27 simprr3 1111 . . . . . . . . . . . 12 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → (𝐽t 𝑣) ∈ 𝐴)
2826, 27eqeltrd 2701 . . . . . . . . . . 11 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)
2923, 24, 28jca32 558 . . . . . . . . . 10 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) ∧ (𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴))) → (𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
3029ex 450 . . . . . . . . 9 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ((𝑣𝐽 ∧ (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴)) → (𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))))
3130reximdv2 3014 . . . . . . . 8 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → (∃𝑣𝐽 (𝑣𝑥𝑦𝑣 ∧ (𝐽t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
3210, 31mpd 15 . . . . . . 7 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵) ∧ 𝑦𝑥) → ∃𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
33323expa 1265 . . . . . 6 ((((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵)) ∧ 𝑦𝑥) → ∃𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
3433ralrimiva 2966 . . . . 5 (((𝐽 ∈ Locally 𝐴𝐵𝐽) ∧ (𝑥𝐽𝑥𝐵)) → ∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
3534ex 450 . . . 4 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → ((𝑥𝐽𝑥𝐵) → ∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
365, 35sylbid 230 . . 3 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝑥 ∈ (𝐽t 𝐵) → ∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
3736ralrimiv 2965 . 2 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → ∀𝑥 ∈ (𝐽t 𝐵)∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴))
38 islly 21271 . 2 ((𝐽t 𝐵) ∈ Locally 𝐴 ↔ ((𝐽t 𝐵) ∈ Top ∧ ∀𝑥 ∈ (𝐽t 𝐵)∀𝑦𝑥𝑣 ∈ ((𝐽t 𝐵) ∩ 𝒫 𝑥)(𝑦𝑣 ∧ ((𝐽t 𝐵) ↾t 𝑣) ∈ 𝐴)))
393, 37, 38sylanbrc 698 1 ((𝐽 ∈ Locally 𝐴𝐵𝐽) → (𝐽t 𝐵) ∈ Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cin 3573  wss 3574  𝒫 cpw 4158  (class class class)co 6650  t crest 16081  Topctop 20698  Locally clly 21267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-lly 21269
This theorem is referenced by:  loclly  21290  llyidm  21291
  Copyright terms: Public domain W3C validator