| Step | Hyp | Ref
| Expression |
| 1 | | llytop 21275 |
. . 3
⊢ (𝐽 ∈ Locally 𝐴 → 𝐽 ∈ Top) |
| 2 | | resttop 20964 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ Top) |
| 3 | 1, 2 | sylan 488 |
. 2
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ Top) |
| 4 | | restopn2 20981 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝐽) → (𝑥 ∈ (𝐽 ↾t 𝐵) ↔ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵))) |
| 5 | 1, 4 | sylan 488 |
. . . 4
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝑥 ∈ (𝐽 ↾t 𝐵) ↔ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵))) |
| 6 | | simp1l 1085 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → 𝐽 ∈ Locally 𝐴) |
| 7 | | simp2l 1087 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ 𝐽) |
| 8 | | simp3 1063 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) |
| 9 | | llyi 21277 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ 𝐽 (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴)) |
| 10 | 6, 7, 8, 9 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ 𝐽 (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴)) |
| 11 | | simprl 794 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝐽) |
| 12 | | simprr1 1109 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝑥) |
| 13 | | simpl2r 1115 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑥 ⊆ 𝐵) |
| 14 | 12, 13 | sstrd 3613 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝐵) |
| 15 | 6, 1 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → 𝐽 ∈ Top) |
| 16 | 15 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝐽 ∈ Top) |
| 17 | | simpl1r 1113 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝐵 ∈ 𝐽) |
| 18 | | restopn2 20981 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ Top ∧ 𝐵 ∈ 𝐽) → (𝑣 ∈ (𝐽 ↾t 𝐵) ↔ (𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝐵))) |
| 19 | 16, 17, 18 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (𝐽 ↾t 𝐵) ↔ (𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝐵))) |
| 20 | 11, 14, 19 | mpbir2and 957 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (𝐽 ↾t 𝐵)) |
| 21 | | selpw 4165 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ 𝒫 𝑥 ↔ 𝑣 ⊆ 𝑥) |
| 22 | 12, 21 | sylibr 224 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥) |
| 23 | 20, 22 | elind 3798 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)) |
| 24 | | simprr2 1110 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → 𝑦 ∈ 𝑣) |
| 25 | | restabs 20969 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ Top ∧ 𝑣 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐽) → ((𝐽 ↾t 𝐵) ↾t 𝑣) = (𝐽 ↾t 𝑣)) |
| 26 | 16, 14, 17, 25 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → ((𝐽 ↾t 𝐵) ↾t 𝑣) = (𝐽 ↾t 𝑣)) |
| 27 | | simprr3 1111 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → (𝐽 ↾t 𝑣) ∈ 𝐴) |
| 28 | 26, 27 | eqeltrd 2701 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴) |
| 29 | 23, 24, 28 | jca32 558 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) ∧ (𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴))) |
| 30 | 29 | ex 450 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → ((𝑣 ∈ 𝐽 ∧ (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴)))) |
| 31 | 30 | reximdv2 3014 |
. . . . . . . 8
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → (∃𝑣 ∈ 𝐽 (𝑣 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑣 ∧ (𝐽 ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴))) |
| 32 | 10, 31 | mpd 15 |
. . . . . . 7
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴)) |
| 33 | 32 | 3expa 1265 |
. . . . . 6
⊢ ((((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵)) ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴)) |
| 34 | 33 | ralrimiva 2966 |
. . . . 5
⊢ (((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) ∧ (𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵)) → ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴)) |
| 35 | 34 | ex 450 |
. . . 4
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → ((𝑥 ∈ 𝐽 ∧ 𝑥 ⊆ 𝐵) → ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴))) |
| 36 | 5, 35 | sylbid 230 |
. . 3
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝑥 ∈ (𝐽 ↾t 𝐵) → ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴))) |
| 37 | 36 | ralrimiv 2965 |
. 2
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → ∀𝑥 ∈ (𝐽 ↾t 𝐵)∀𝑦 ∈ 𝑥 ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴)) |
| 38 | | islly 21271 |
. 2
⊢ ((𝐽 ↾t 𝐵) ∈ Locally 𝐴 ↔ ((𝐽 ↾t 𝐵) ∈ Top ∧ ∀𝑥 ∈ (𝐽 ↾t 𝐵)∀𝑦 ∈ 𝑥 ∃𝑣 ∈ ((𝐽 ↾t 𝐵) ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ ((𝐽 ↾t 𝐵) ↾t 𝑣) ∈ 𝐴))) |
| 39 | 3, 37, 38 | sylanbrc 698 |
1
⊢ ((𝐽 ∈ Locally 𝐴 ∧ 𝐵 ∈ 𝐽) → (𝐽 ↾t 𝐵) ∈ Locally 𝐴) |