Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmbr3 Structured version   Visualization version   GIF version

Theorem lmbr3 39979
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
lmbr3.1 𝑘𝐹
lmbr3.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
Assertion
Ref Expression
lmbr3 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Distinct variable groups:   𝑗,𝐹,𝑢   𝑢,𝐽   𝑢,𝑃   𝑗,𝑘,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑗,𝑘)   𝑃(𝑗,𝑘)   𝐹(𝑘)   𝐽(𝑗,𝑘)   𝑋(𝑢,𝑗,𝑘)

Proof of Theorem lmbr3
Dummy variables 𝑖 𝑙 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmbr3.2 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
21lmbr3v 39977 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣)))))
3 eleq2w 2685 . . . . 5 (𝑣 = 𝑢 → (𝑃𝑣𝑃𝑢))
4 eleq2w 2685 . . . . . . . 8 (𝑣 = 𝑢 → ((𝐹𝑙) ∈ 𝑣 ↔ (𝐹𝑙) ∈ 𝑢))
54anbi2d 740 . . . . . . 7 (𝑣 = 𝑢 → ((𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣) ↔ (𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)))
65rexralbidv 3058 . . . . . 6 (𝑣 = 𝑢 → (∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣) ↔ ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)))
7 fveq2 6191 . . . . . . . . 9 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
87raleqdv 3144 . . . . . . . 8 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∀𝑙 ∈ (ℤ𝑗)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)))
9 nfcv 2764 . . . . . . . . . . 11 𝑘𝑙
10 lmbr3.1 . . . . . . . . . . . 12 𝑘𝐹
1110nfdm 5367 . . . . . . . . . . 11 𝑘dom 𝐹
129, 11nfel 2777 . . . . . . . . . 10 𝑘 𝑙 ∈ dom 𝐹
1310, 9nffv 6198 . . . . . . . . . . 11 𝑘(𝐹𝑙)
14 nfcv 2764 . . . . . . . . . . 11 𝑘𝑢
1513, 14nfel 2777 . . . . . . . . . 10 𝑘(𝐹𝑙) ∈ 𝑢
1612, 15nfan 1828 . . . . . . . . 9 𝑘(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢)
17 nfv 1843 . . . . . . . . 9 𝑙(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)
18 eleq1w 2684 . . . . . . . . . 10 (𝑙 = 𝑘 → (𝑙 ∈ dom 𝐹𝑘 ∈ dom 𝐹))
19 fveq2 6191 . . . . . . . . . . 11 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
2019eleq1d 2686 . . . . . . . . . 10 (𝑙 = 𝑘 → ((𝐹𝑙) ∈ 𝑢 ↔ (𝐹𝑘) ∈ 𝑢))
2118, 20anbi12d 747 . . . . . . . . 9 (𝑙 = 𝑘 → ((𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2216, 17, 21cbvral 3167 . . . . . . . 8 (∀𝑙 ∈ (ℤ𝑗)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
238, 22syl6bb 276 . . . . . . 7 (𝑖 = 𝑗 → (∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
2423cbvrexv 3172 . . . . . 6 (∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))
256, 24syl6bb 276 . . . . 5 (𝑣 = 𝑢 → (∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
263, 25imbi12d 334 . . . 4 (𝑣 = 𝑢 → ((𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣)) ↔ (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2726cbvralv 3171 . . 3 (∀𝑣𝐽 (𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣)) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
28273anbi3i 1255 . 2 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑣𝐽 (𝑃𝑣 → ∃𝑖 ∈ ℤ ∀𝑙 ∈ (ℤ𝑖)(𝑙 ∈ dom 𝐹 ∧ (𝐹𝑙) ∈ 𝑣))) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
292, 28syl6bb 276 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wnfc 2751  wral 2912  wrex 2913   class class class wbr 4653  dom cdm 5114  cfv 5888  (class class class)co 6650  pm cpm 7858  cc 9934  cz 11377  cuz 11687  TopOnctopon 20715  𝑡clm 21030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-top 20699  df-topon 20716  df-lm 21033
This theorem is referenced by:  xlimbr  40053  xlimmnfvlem1  40058  xlimmnfvlem2  40059  xlimpnfvlem1  40062  xlimpnfvlem2  40063
  Copyright terms: Public domain W3C validator