MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodfgrp Structured version   Visualization version   GIF version

Theorem lmodfgrp 18872
Description: The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypothesis
Ref Expression
lmodring.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
lmodfgrp (𝑊 ∈ LMod → 𝐹 ∈ Grp)

Proof of Theorem lmodfgrp
StepHypRef Expression
1 lmodring.1 . . 3 𝐹 = (Scalar‘𝑊)
21lmodring 18871 . 2 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
3 ringgrp 18552 . 2 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
42, 3syl 17 1 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cfv 5888  Scalarcsca 15944  Grpcgrp 17422  Ringcrg 18547  LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-ring 18549  df-lmod 18865
This theorem is referenced by:  lmodacl  18874  lmodsn0  18876  lmodvneg1  18906  lssvsubcl  18944  lspsnneg  19006  lvecvscan2  19112  lspexch  19129  lspsolvlem  19142  ipsubdir  19987  ipsubdi  19988  ip2eq  19998  ocvlss  20016  lsmcss  20036  islindf4  20177  clmfgrp  22871  lflmul  34355  lkrlss  34382  eqlkr  34386  lkrlsp  34389  lshpkrlem1  34397  ldualvsubval  34444  lcfrlem1  36831  lcdvsubval  36907  lmodvsmdi  42163  ascl0  42165  lincsum  42218  lincsumcl  42220  lincext1  42243  lindslinindsimp1  42246  lindslinindimp2lem1  42247  lindslinindsimp2lem5  42251  ldepsprlem  42261  ldepspr  42262  lincresunit3lem3  42263  lincresunit3lem1  42268  lincresunit3lem2  42269  lincresunit3  42270
  Copyright terms: Public domain W3C validator