Proof of Theorem ipsubdir
| Step | Hyp | Ref
| Expression |
| 1 | | simpl 473 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ PreHil) |
| 2 | | phllmod 19975 |
. . . . . . . 8
⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) |
| 3 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ LMod) |
| 4 | | lmodgrp 18870 |
. . . . . . 7
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
| 5 | 3, 4 | syl 17 |
. . . . . 6
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ Grp) |
| 6 | | simpr1 1067 |
. . . . . 6
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) |
| 7 | | simpr2 1068 |
. . . . . 6
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) |
| 8 | | phllmhm.v |
. . . . . . 7
⊢ 𝑉 = (Base‘𝑊) |
| 9 | | ipsubdir.m |
. . . . . . 7
⊢ − =
(-g‘𝑊) |
| 10 | 8, 9 | grpsubcl 17495 |
. . . . . 6
⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 − 𝐵) ∈ 𝑉) |
| 11 | 5, 6, 7, 10 | syl3anc 1326 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 − 𝐵) ∈ 𝑉) |
| 12 | | simpr3 1069 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) |
| 13 | | phlsrng.f |
. . . . . 6
⊢ 𝐹 = (Scalar‘𝑊) |
| 14 | | phllmhm.h |
. . . . . 6
⊢ , =
(·𝑖‘𝑊) |
| 15 | | eqid 2622 |
. . . . . 6
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 16 | | eqid 2622 |
. . . . . 6
⊢
(+g‘𝐹) = (+g‘𝐹) |
| 17 | 13, 14, 8, 15, 16 | ipdir 19984 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ ((𝐴 − 𝐵) ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 − 𝐵)(+g‘𝑊)𝐵) , 𝐶) = (((𝐴 − 𝐵) , 𝐶)(+g‘𝐹)(𝐵 , 𝐶))) |
| 18 | 1, 11, 7, 12, 17 | syl13anc 1328 |
. . . 4
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 − 𝐵)(+g‘𝑊)𝐵) , 𝐶) = (((𝐴 − 𝐵) , 𝐶)(+g‘𝐹)(𝐵 , 𝐶))) |
| 19 | 8, 15, 9 | grpnpcan 17507 |
. . . . . 6
⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐴 − 𝐵)(+g‘𝑊)𝐵) = 𝐴) |
| 20 | 5, 6, 7, 19 | syl3anc 1326 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵)(+g‘𝑊)𝐵) = 𝐴) |
| 21 | 20 | oveq1d 6665 |
. . . 4
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 − 𝐵)(+g‘𝑊)𝐵) , 𝐶) = (𝐴 , 𝐶)) |
| 22 | 18, 21 | eqtr3d 2658 |
. . 3
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 − 𝐵) , 𝐶)(+g‘𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶)) |
| 23 | 13 | lmodfgrp 18872 |
. . . . 5
⊢ (𝑊 ∈ LMod → 𝐹 ∈ Grp) |
| 24 | 3, 23 | syl 17 |
. . . 4
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐹 ∈ Grp) |
| 25 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝐹) =
(Base‘𝐹) |
| 26 | 13, 14, 8, 25 | ipcl 19978 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
| 27 | 1, 6, 12, 26 | syl3anc 1326 |
. . . 4
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 , 𝐶) ∈ (Base‘𝐹)) |
| 28 | 13, 14, 8, 25 | ipcl 19978 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
| 29 | 1, 7, 12, 28 | syl3anc 1326 |
. . . 4
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐵 , 𝐶) ∈ (Base‘𝐹)) |
| 30 | 13, 14, 8, 25 | ipcl 19978 |
. . . . 5
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 − 𝐵) ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → ((𝐴 − 𝐵) , 𝐶) ∈ (Base‘𝐹)) |
| 31 | 1, 11, 12, 30 | syl3anc 1326 |
. . . 4
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) , 𝐶) ∈ (Base‘𝐹)) |
| 32 | | ipsubdir.s |
. . . . 5
⊢ 𝑆 = (-g‘𝐹) |
| 33 | 25, 16, 32 | grpsubadd 17503 |
. . . 4
⊢ ((𝐹 ∈ Grp ∧ ((𝐴 , 𝐶) ∈ (Base‘𝐹) ∧ (𝐵 , 𝐶) ∈ (Base‘𝐹) ∧ ((𝐴 − 𝐵) , 𝐶) ∈ (Base‘𝐹))) → (((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 − 𝐵) , 𝐶) ↔ (((𝐴 − 𝐵) , 𝐶)(+g‘𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶))) |
| 34 | 24, 27, 29, 31, 33 | syl13anc 1328 |
. . 3
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 − 𝐵) , 𝐶) ↔ (((𝐴 − 𝐵) , 𝐶)(+g‘𝐹)(𝐵 , 𝐶)) = (𝐴 , 𝐶))) |
| 35 | 22, 34 | mpbird 247 |
. 2
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶)) = ((𝐴 − 𝐵) , 𝐶)) |
| 36 | 35 | eqcomd 2628 |
1
⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) , 𝐶) = ((𝐴 , 𝐶)𝑆(𝐵 , 𝐶))) |