Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincresunit3lem3 Structured version   Visualization version   GIF version

Theorem lincresunit3lem3 42263
Description: Lemma 3 for lincresunit3 42270. (Contributed by AV, 18-May-2019.)
Hypotheses
Ref Expression
lincresunit3lem3.b 𝐵 = (Base‘𝑀)
lincresunit3lem3.r 𝑅 = (Scalar‘𝑀)
lincresunit3lem3.e 𝐸 = (Base‘𝑅)
lincresunit3lem3.u 𝑈 = (Unit‘𝑅)
lincresunit3lem3.n 𝑁 = (invg𝑅)
lincresunit3lem3.t · = ( ·𝑠𝑀)
Assertion
Ref Expression
lincresunit3lem3 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem lincresunit3lem3
StepHypRef Expression
1 3simpa 1058 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → (𝑀 ∈ LMod ∧ 𝑋𝐵))
21adantr 481 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑀 ∈ LMod ∧ 𝑋𝐵))
3 lincresunit3lem3.b . . . . . . . 8 𝐵 = (Base‘𝑀)
4 lincresunit3lem3.r . . . . . . . 8 𝑅 = (Scalar‘𝑀)
5 lincresunit3lem3.t . . . . . . . 8 · = ( ·𝑠𝑀)
6 eqid 2622 . . . . . . . 8 (1r𝑅) = (1r𝑅)
73, 4, 5, 6lmodvs1 18891 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵) → ((1r𝑅) · 𝑋) = 𝑋)
82, 7syl 17 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → ((1r𝑅) · 𝑋) = 𝑋)
94lmodring 18871 . . . . . . . . . . . 12 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
1093ad2ant1 1082 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Ring)
1110adantr 481 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑅 ∈ Ring)
12 lincresunit3lem3.u . . . . . . . . . . . . 13 𝑈 = (Unit‘𝑅)
13 lincresunit3lem3.n . . . . . . . . . . . . 13 𝑁 = (invg𝑅)
1412, 13unitnegcl 18681 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝑈)
159, 14sylan 488 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝑈)
16153ad2antl1 1223 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝑈)
1711, 16jca 554 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈))
18 eqid 2622 . . . . . . . . . 10 (invr𝑅) = (invr𝑅)
19 eqid 2622 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
2012, 18, 19, 6unitlinv 18677 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈) → (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) = (1r𝑅))
2117, 20syl 17 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) = (1r𝑅))
2221eqcomd 2628 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (1r𝑅) = (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)))
2322oveq1d 6665 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → ((1r𝑅) · 𝑋) = ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋))
248, 23eqtr3d 2658 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑋 = ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋))
2524adantr 481 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → 𝑋 = ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋))
26 simpl1 1064 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑀 ∈ LMod)
27 lincresunit3lem3.e . . . . . . . . . . 11 𝐸 = (Base‘𝑅)
2812, 18, 27ringinvcl 18676 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈) → ((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸)
2917, 28syl 17 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → ((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸)
304lmodfgrp 18872 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
31303ad2ant1 1082 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → 𝑅 ∈ Grp)
3227, 12unitcl 18659 . . . . . . . . . 10 (𝐴𝑈𝐴𝐸)
3327, 13grpinvcl 17467 . . . . . . . . . 10 ((𝑅 ∈ Grp ∧ 𝐴𝐸) → (𝑁𝐴) ∈ 𝐸)
3431, 32, 33syl2an 494 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑁𝐴) ∈ 𝐸)
35 simpl2 1065 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑋𝐵)
3629, 34, 353jca 1242 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵))
3726, 36jca 554 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵)))
3837adantr 481 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵)))
393, 4, 5, 27, 19lmodvsass 18888 . . . . . 6 ((𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑋𝐵)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)))
4038, 39syl 17 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)))
41 oveq2 6658 . . . . . 6 (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) → (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
4241adantl 482 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑋)) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
4326adantr 481 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → 𝑀 ∈ LMod)
44 simpl3 1066 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → 𝑌𝐵)
4529, 34, 443jca 1242 . . . . . . . . 9 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵))
4645adantr 481 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵))
4743, 46jca 554 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵)))
483, 4, 5, 27, 19lmodvsass 18888 . . . . . . 7 ((𝑀 ∈ LMod ∧ (((invr𝑅)‘(𝑁𝐴)) ∈ 𝐸 ∧ (𝑁𝐴) ∈ 𝐸𝑌𝐵)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑌) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
4947, 48syl 17 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑌) = (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)))
5017adantr 481 . . . . . . . 8 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑅 ∈ Ring ∧ (𝑁𝐴) ∈ 𝑈))
5150, 20syl 17 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) = (1r𝑅))
5251oveq1d 6665 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑌) = ((1r𝑅) · 𝑌))
5349, 52eqtr3d 2658 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (((invr𝑅)‘(𝑁𝐴)) · ((𝑁𝐴) · 𝑌)) = ((1r𝑅) · 𝑌))
5440, 42, 533eqtrd 2660 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((((invr𝑅)‘(𝑁𝐴))(.r𝑅)(𝑁𝐴)) · 𝑋) = ((1r𝑅) · 𝑌))
55 3simpb 1059 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
5655adantr 481 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
5756adantr 481 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → (𝑀 ∈ LMod ∧ 𝑌𝐵))
583, 4, 5, 6lmodvs1 18891 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑌𝐵) → ((1r𝑅) · 𝑌) = 𝑌)
5957, 58syl 17 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → ((1r𝑅) · 𝑌) = 𝑌)
6025, 54, 593eqtrd 2660 . . 3 ((((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) ∧ ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌)) → 𝑋 = 𝑌)
6160ex 450 . 2 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) → 𝑋 = 𝑌))
62 oveq2 6658 . 2 (𝑋 = 𝑌 → ((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌))
6361, 62impbid1 215 1 (((𝑀 ∈ LMod ∧ 𝑋𝐵𝑌𝐵) ∧ 𝐴𝑈) → (((𝑁𝐴) · 𝑋) = ((𝑁𝐴) · 𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  Basecbs 15857  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  Grpcgrp 17422  invgcminusg 17423  1rcur 18501  Ringcrg 18547  Unitcui 18639  invrcinvr 18671  LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-lmod 18865
This theorem is referenced by:  lincresunit3  42270
  Copyright terms: Public domain W3C validator