Proof of Theorem lincresunit3lem1
Step | Hyp | Ref
| Expression |
1 | | lincresunit.g |
. . . . . 6
⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) |
2 | 1 | a1i 11 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)))) |
3 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑠 = 𝑧 → (𝐹‘𝑠) = (𝐹‘𝑧)) |
4 | 3 | oveq2d 6666 |
. . . . . 6
⊢ (𝑠 = 𝑧 → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) = ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))) |
5 | 4 | adantl 482 |
. . . . 5
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) ∧ 𝑠 = 𝑧) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠)) = ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))) |
6 | | simpr3 1069 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧 ∈ (𝑆 ∖ {𝑋})) |
7 | | ovexd 6680 |
. . . . 5
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)) ∈ V) |
8 | 2, 5, 6, 7 | fvmptd 6288 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐺‘𝑧) = ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))) |
9 | 8 | oveq1d 6665 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧) = (((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))( ·𝑠
‘𝑀)𝑧)) |
10 | 9 | oveq2d 6666 |
. 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))( ·𝑠
‘𝑀)𝑧))) |
11 | | simp2 1062 |
. . . 4
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑀 ∈ LMod) |
12 | 11 | adantr 481 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑀 ∈ LMod) |
13 | | lincresunit.r |
. . . . . 6
⊢ 𝑅 = (Scalar‘𝑀) |
14 | 13 | lmodfgrp 18872 |
. . . . 5
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Grp) |
15 | 14 | 3ad2ant2 1083 |
. . . 4
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ Grp) |
16 | | lincresunit.e |
. . . . . 6
⊢ 𝐸 = (Base‘𝑅) |
17 | | lincresunit.u |
. . . . . 6
⊢ 𝑈 = (Unit‘𝑅) |
18 | 16, 17 | unitcl 18659 |
. . . . 5
⊢ ((𝐹‘𝑋) ∈ 𝑈 → (𝐹‘𝑋) ∈ 𝐸) |
19 | 18 | 3ad2ant2 1083 |
. . . 4
⊢ ((𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹‘𝑋) ∈ 𝐸) |
20 | | lincresunit.n |
. . . . 5
⊢ 𝑁 = (invg‘𝑅) |
21 | 16, 20 | grpinvcl 17467 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ (𝐹‘𝑋) ∈ 𝐸) → (𝑁‘(𝐹‘𝑋)) ∈ 𝐸) |
22 | 15, 19, 21 | syl2an 494 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝑁‘(𝐹‘𝑋)) ∈ 𝐸) |
23 | | 3simpa 1058 |
. . . . 5
⊢ ((𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) |
24 | 23 | anim2i 593 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈))) |
25 | | eldifi 3732 |
. . . . . 6
⊢ (𝑧 ∈ (𝑆 ∖ {𝑋}) → 𝑧 ∈ 𝑆) |
26 | 25 | 3ad2ant3 1084 |
. . . . 5
⊢ ((𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧 ∈ 𝑆) |
27 | 26 | adantl 482 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧 ∈ 𝑆) |
28 | | lincresunit.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑀) |
29 | | lincresunit.0 |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
30 | | lincresunit.z |
. . . . 5
⊢ 𝑍 = (0g‘𝑀) |
31 | | lincresunit.i |
. . . . 5
⊢ 𝐼 = (invr‘𝑅) |
32 | | lincresunit.t |
. . . . 5
⊢ · =
(.r‘𝑅) |
33 | 28, 13, 16, 17, 29, 30, 20, 31, 32, 1 | lincresunitlem2 42265 |
. . . 4
⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑧 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)) ∈ 𝐸) |
34 | 24, 27, 33 | syl2anc 693 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)) ∈ 𝐸) |
35 | | elpwi 4168 |
. . . . . . . . 9
⊢ (𝑆 ∈ 𝒫 𝐵 → 𝑆 ⊆ 𝐵) |
36 | 35 | sseld 3602 |
. . . . . . . 8
⊢ (𝑆 ∈ 𝒫 𝐵 → (𝑧 ∈ 𝑆 → 𝑧 ∈ 𝐵)) |
37 | 25, 36 | syl5com 31 |
. . . . . . 7
⊢ (𝑧 ∈ (𝑆 ∖ {𝑋}) → (𝑆 ∈ 𝒫 𝐵 → 𝑧 ∈ 𝐵)) |
38 | 37 | 3ad2ant3 1084 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝑆 ∈ 𝒫 𝐵 → 𝑧 ∈ 𝐵)) |
39 | 38 | com12 32 |
. . . . 5
⊢ (𝑆 ∈ 𝒫 𝐵 → ((𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧 ∈ 𝐵)) |
40 | 39 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → ((𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → 𝑧 ∈ 𝐵)) |
41 | 40 | imp 445 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑧 ∈ 𝐵) |
42 | | eqid 2622 |
. . . . 5
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
43 | 28, 13, 42, 16, 32 | lmodvsass 18888 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹‘𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)) ∈ 𝐸 ∧ 𝑧 ∈ 𝐵)) → (((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)))( ·𝑠
‘𝑀)𝑧) = ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))( ·𝑠
‘𝑀)𝑧))) |
44 | 43 | eqcomd 2628 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ ((𝑁‘(𝐹‘𝑋)) ∈ 𝐸 ∧ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)) ∈ 𝐸 ∧ 𝑧 ∈ 𝐵)) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))( ·𝑠
‘𝑀)𝑧)) = (((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)))( ·𝑠
‘𝑀)𝑧)) |
45 | 12, 22, 34, 41, 44 | syl13anc 1328 |
. 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)(((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))( ·𝑠
‘𝑀)𝑧)) = (((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)))( ·𝑠
‘𝑀)𝑧)) |
46 | 13 | lmodring 18871 |
. . . . . 6
⊢ (𝑀 ∈ LMod → 𝑅 ∈ Ring) |
47 | 46 | 3ad2ant2 1083 |
. . . . 5
⊢ ((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) → 𝑅 ∈ Ring) |
48 | 47 | adantr 481 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → 𝑅 ∈ Ring) |
49 | | elmapi 7879 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) → 𝐹:𝑆⟶𝐸) |
50 | | ffvelrn 6357 |
. . . . . . 7
⊢ ((𝐹:𝑆⟶𝐸 ∧ 𝑧 ∈ 𝑆) → (𝐹‘𝑧) ∈ 𝐸) |
51 | 49, 25, 50 | syl2an 494 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹‘𝑧) ∈ 𝐸) |
52 | 51 | 3adant2 1080 |
. . . . 5
⊢ ((𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹‘𝑧) ∈ 𝐸) |
53 | 52 | adantl 482 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹‘𝑧) ∈ 𝐸) |
54 | | simp2 1062 |
. . . . 5
⊢ ((𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋})) → (𝐹‘𝑋) ∈ 𝑈) |
55 | 54 | adantl 482 |
. . . 4
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → (𝐹‘𝑋) ∈ 𝑈) |
56 | 16, 17, 20, 31, 32 | invginvrid 42148 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐹‘𝑧) ∈ 𝐸 ∧ (𝐹‘𝑋) ∈ 𝑈) → ((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))) = (𝐹‘𝑧)) |
57 | 48, 53, 55, 56 | syl3anc 1326 |
. . 3
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧))) = (𝐹‘𝑧)) |
58 | 57 | oveq1d 6665 |
. 2
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → (((𝑁‘(𝐹‘𝑋)) · ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑧)))( ·𝑠
‘𝑀)𝑧) = ((𝐹‘𝑧)( ·𝑠
‘𝑀)𝑧)) |
59 | 10, 45, 58 | 3eqtrd 2660 |
1
⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑𝑚 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋))( ·𝑠
‘𝑀)((𝐺‘𝑧)( ·𝑠
‘𝑀)𝑧)) = ((𝐹‘𝑧)( ·𝑠
‘𝑀)𝑧)) |