Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr Structured version   Visualization version   GIF version

Theorem eqlkr 34386
Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 18-Apr-2014.)
Hypotheses
Ref Expression
eqlkr.d 𝐷 = (Scalar‘𝑊)
eqlkr.k 𝐾 = (Base‘𝐷)
eqlkr.t · = (.r𝐷)
eqlkr.v 𝑉 = (Base‘𝑊)
eqlkr.f 𝐹 = (LFnl‘𝑊)
eqlkr.l 𝐿 = (LKer‘𝑊)
Assertion
Ref Expression
eqlkr ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
Distinct variable groups:   𝑥,𝑟,𝐷   𝑥,𝐹   𝐺,𝑟,𝑥   𝐻,𝑟,𝑥   𝑉,𝑟,𝑥   𝐾,𝑟   𝑥,𝐿   · ,𝑟   𝑥,𝑊
Allowed substitution hints:   · (𝑥)   𝐹(𝑟)   𝐾(𝑥)   𝐿(𝑟)   𝑊(𝑟)

Proof of Theorem eqlkr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1064 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → 𝑊 ∈ LVec)
2 lveclmod 19106 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
3 eqlkr.d . . . . . . 7 𝐷 = (Scalar‘𝑊)
43lmodring 18871 . . . . . 6 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
52, 4syl 17 . . . . 5 (𝑊 ∈ LVec → 𝐷 ∈ Ring)
61, 5syl 17 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → 𝐷 ∈ Ring)
7 eqlkr.k . . . . 5 𝐾 = (Base‘𝐷)
8 eqid 2622 . . . . 5 (1r𝐷) = (1r𝐷)
97, 8ringidcl 18568 . . . 4 (𝐷 ∈ Ring → (1r𝐷) ∈ 𝐾)
106, 9syl 17 . . 3 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → (1r𝐷) ∈ 𝐾)
11 simp11 1091 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝑊 ∈ LVec)
1211, 5syl 17 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐷 ∈ Ring)
13 simp12l 1174 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐺𝐹)
14 simp3 1063 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝑥𝑉)
15 eqlkr.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
16 eqlkr.f . . . . . . . . 9 𝐹 = (LFnl‘𝑊)
173, 7, 15, 16lflcl 34351 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
1811, 13, 14, 17syl3anc 1326 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
19 eqlkr.t . . . . . . . 8 · = (.r𝐷)
207, 19, 8ringridm 18572 . . . . . . 7 ((𝐷 ∈ Ring ∧ (𝐺𝑥) ∈ 𝐾) → ((𝐺𝑥) · (1r𝐷)) = (𝐺𝑥))
2112, 18, 20syl2anc 693 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → ((𝐺𝑥) · (1r𝐷)) = (𝐺𝑥))
22 simp2 1062 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐺 = (𝑉 × {(0g𝐷)}))
23 simp13 1093 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐿𝐺) = (𝐿𝐻))
2411, 2syl 17 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝑊 ∈ LMod)
25 eqid 2622 . . . . . . . . . . . . 13 (0g𝐷) = (0g𝐷)
26 eqlkr.l . . . . . . . . . . . . 13 𝐿 = (LKer‘𝑊)
273, 25, 15, 16, 26lkr0f 34381 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
2824, 13, 27syl2anc 693 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → ((𝐿𝐺) = 𝑉𝐺 = (𝑉 × {(0g𝐷)})))
2922, 28mpbird 247 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐿𝐺) = 𝑉)
3023, 29eqtr3d 2658 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐿𝐻) = 𝑉)
31 simp12r 1175 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐻𝐹)
323, 25, 15, 16, 26lkr0f 34381 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐻𝐹) → ((𝐿𝐻) = 𝑉𝐻 = (𝑉 × {(0g𝐷)})))
3324, 31, 32syl2anc 693 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → ((𝐿𝐻) = 𝑉𝐻 = (𝑉 × {(0g𝐷)})))
3430, 33mpbid 222 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐻 = (𝑉 × {(0g𝐷)}))
3522, 34eqtr4d 2659 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → 𝐺 = 𝐻)
3635fveq1d 6193 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐺𝑥) = (𝐻𝑥))
3721, 36eqtr2d 2657 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)}) ∧ 𝑥𝑉) → (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷)))
38373expia 1267 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → (𝑥𝑉 → (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷))))
3938ralrimiv 2965 . . 3 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷)))
40 oveq2 6658 . . . . . 6 (𝑟 = (1r𝐷) → ((𝐺𝑥) · 𝑟) = ((𝐺𝑥) · (1r𝐷)))
4140eqeq2d 2632 . . . . 5 (𝑟 = (1r𝐷) → ((𝐻𝑥) = ((𝐺𝑥) · 𝑟) ↔ (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷))))
4241ralbidv 2986 . . . 4 (𝑟 = (1r𝐷) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷))))
4342rspcev 3309 . . 3 (((1r𝐷) ∈ 𝐾 ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (1r𝐷))) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
4410, 39, 43syl2anc 693 . 2 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 = (𝑉 × {(0g𝐷)})) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
45 simpl1 1064 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → 𝑊 ∈ LVec)
46 simpl2l 1114 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → 𝐺𝐹)
47 simpr 477 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → 𝐺 ≠ (𝑉 × {(0g𝐷)}))
483, 25, 8, 15, 16lfl1 34357 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × {(0g𝐷)})) → ∃𝑧𝑉 (𝐺𝑧) = (1r𝐷))
4945, 46, 47, 48syl3anc 1326 . . 3 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → ∃𝑧𝑉 (𝐺𝑧) = (1r𝐷))
50 simpl1 1064 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → 𝑊 ∈ LVec)
51 simpl2r 1115 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → 𝐻𝐹)
52 simpr2 1068 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → 𝑧𝑉)
533, 7, 15, 16lflcl 34351 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐻𝐹𝑧𝑉) → (𝐻𝑧) ∈ 𝐾)
5450, 51, 52, 53syl3anc 1326 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → (𝐻𝑧) ∈ 𝐾)
55 simp11 1091 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝑊 ∈ LVec)
5655, 2syl 17 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝑊 ∈ LMod)
57 simp12r 1175 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝐻𝐹)
58 simp12l 1174 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝐺𝐹)
59 simp3 1063 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝑥𝑉)
603, 7, 15, 16lflcl 34351 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
6156, 58, 59, 60syl3anc 1326 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
62 simp22 1095 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝑧𝑉)
63 eqid 2622 . . . . . . . . . . . . . 14 ( ·𝑠𝑊) = ( ·𝑠𝑊)
643, 7, 19, 15, 63, 16lflmul 34355 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐻𝐹 ∧ ((𝐺𝑥) ∈ 𝐾𝑧𝑉)) → (𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧)) = ((𝐺𝑥) · (𝐻𝑧)))
6556, 57, 61, 62, 64syl112anc 1330 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧)) = ((𝐺𝑥) · (𝐻𝑧)))
6665oveq2d 6666 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐻𝑥)(-g𝐷)(𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐻𝑥)(-g𝐷)((𝐺𝑥) · (𝐻𝑧))))
6715, 3, 63, 7lmodvscl 18880 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝐺𝑥) ∈ 𝐾𝑧𝑉) → ((𝐺𝑥)( ·𝑠𝑊)𝑧) ∈ 𝑉)
6856, 61, 62, 67syl3anc 1326 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥)( ·𝑠𝑊)𝑧) ∈ 𝑉)
69 eqid 2622 . . . . . . . . . . . . . 14 (-g𝐷) = (-g𝐷)
70 eqid 2622 . . . . . . . . . . . . . 14 (-g𝑊) = (-g𝑊)
713, 69, 15, 70, 16lflsub 34354 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐻𝐹 ∧ (𝑥𝑉 ∧ ((𝐺𝑥)( ·𝑠𝑊)𝑧) ∈ 𝑉)) → (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐻𝑥)(-g𝐷)(𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧))))
7256, 57, 59, 68, 71syl112anc 1330 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐻𝑥)(-g𝐷)(𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧))))
7315, 70lmodvsubcl 18908 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LMod ∧ 𝑥𝑉 ∧ ((𝐺𝑥)( ·𝑠𝑊)𝑧) ∈ 𝑉) → (𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉)
7456, 59, 68, 73syl3anc 1326 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉)
753, 69, 15, 70, 16lflsub 34354 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑥𝑉 ∧ ((𝐺𝑥)( ·𝑠𝑊)𝑧) ∈ 𝑉)) → (𝐺‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐺𝑥)(-g𝐷)(𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧))))
7656, 58, 59, 68, 75syl112anc 1330 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐺𝑥)(-g𝐷)(𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧))))
7755, 58, 59, 17syl3anc 1326 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺𝑥) ∈ 𝐾)
783, 7, 19, 15, 63, 16lflmul 34355 . . . . . . . . . . . . . . . . . . . 20 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ ((𝐺𝑥) ∈ 𝐾𝑧𝑉)) → (𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧)) = ((𝐺𝑥) · (𝐺𝑧)))
7956, 58, 77, 62, 78syl112anc 1330 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧)) = ((𝐺𝑥) · (𝐺𝑧)))
80 simp23 1096 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺𝑧) = (1r𝐷))
8180oveq2d 6666 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥) · (𝐺𝑧)) = ((𝐺𝑥) · (1r𝐷)))
8255, 5syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝐷 ∈ Ring)
8382, 77, 20syl2anc 693 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥) · (1r𝐷)) = (𝐺𝑥))
8479, 81, 833eqtrd 2660 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧)) = (𝐺𝑥))
8584oveq2d 6666 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥)(-g𝐷)(𝐺‘((𝐺𝑥)( ·𝑠𝑊)𝑧))) = ((𝐺𝑥)(-g𝐷)(𝐺𝑥)))
863lmodfgrp 18872 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ LMod → 𝐷 ∈ Grp)
872, 86syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ LVec → 𝐷 ∈ Grp)
8855, 87syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → 𝐷 ∈ Grp)
897, 25, 69grpsubid 17499 . . . . . . . . . . . . . . . . . 18 ((𝐷 ∈ Grp ∧ (𝐺𝑥) ∈ 𝐾) → ((𝐺𝑥)(-g𝐷)(𝐺𝑥)) = (0g𝐷))
9088, 77, 89syl2anc 693 . . . . . . . . . . . . . . . . 17 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥)(-g𝐷)(𝐺𝑥)) = (0g𝐷))
9176, 85, 903eqtrd 2660 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐺‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))
9215, 3, 25, 16, 26ellkr 34376 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐺) ↔ ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉 ∧ (𝐺‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))))
9355, 58, 92syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐺) ↔ ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉 ∧ (𝐺‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))))
9474, 91, 93mpbir2and 957 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐺))
95 simp13 1093 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐿𝐺) = (𝐿𝐻))
9694, 95eleqtrd 2703 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐻))
9715, 3, 25, 16, 26ellkr 34376 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LVec ∧ 𝐻𝐹) → ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐻) ↔ ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉 ∧ (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))))
9855, 57, 97syl2anc 693 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ (𝐿𝐻) ↔ ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉 ∧ (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))))
9996, 98mpbid 222 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧)) ∈ 𝑉 ∧ (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷)))
10099simprd 479 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻‘(𝑥(-g𝑊)((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))
10172, 100eqtr3d 2658 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐻𝑥)(-g𝐷)(𝐻‘((𝐺𝑥)( ·𝑠𝑊)𝑧))) = (0g𝐷))
10266, 101eqtr3d 2658 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐻𝑥)(-g𝐷)((𝐺𝑥) · (𝐻𝑧))) = (0g𝐷))
1033, 7, 15, 16lflcl 34351 . . . . . . . . . . . 12 ((𝑊 ∈ LVec ∧ 𝐻𝐹𝑥𝑉) → (𝐻𝑥) ∈ 𝐾)
10455, 57, 59, 103syl3anc 1326 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻𝑥) ∈ 𝐾)
105543adant3 1081 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻𝑧) ∈ 𝐾)
1063, 7, 19lmodmcl 18875 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝐺𝑥) ∈ 𝐾 ∧ (𝐻𝑧) ∈ 𝐾) → ((𝐺𝑥) · (𝐻𝑧)) ∈ 𝐾)
10756, 77, 105, 106syl3anc 1326 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → ((𝐺𝑥) · (𝐻𝑧)) ∈ 𝐾)
1087, 25, 69grpsubeq0 17501 . . . . . . . . . . 11 ((𝐷 ∈ Grp ∧ (𝐻𝑥) ∈ 𝐾 ∧ ((𝐺𝑥) · (𝐻𝑧)) ∈ 𝐾) → (((𝐻𝑥)(-g𝐷)((𝐺𝑥) · (𝐻𝑧))) = (0g𝐷) ↔ (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))))
10988, 104, 107, 108syl3anc 1326 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (((𝐻𝑥)(-g𝐷)((𝐺𝑥) · (𝐻𝑧))) = (0g𝐷) ↔ (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))))
110102, 109mpbid 222 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷)) ∧ 𝑥𝑉) → (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧)))
1111103expia 1267 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → (𝑥𝑉 → (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))))
112111ralrimiv 2965 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧)))
113 oveq2 6658 . . . . . . . . . 10 (𝑟 = (𝐻𝑧) → ((𝐺𝑥) · 𝑟) = ((𝐺𝑥) · (𝐻𝑧)))
114113eqeq2d 2632 . . . . . . . . 9 (𝑟 = (𝐻𝑧) → ((𝐻𝑥) = ((𝐺𝑥) · 𝑟) ↔ (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))))
115114ralbidv 2986 . . . . . . . 8 (𝑟 = (𝐻𝑧) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))))
116115rspcev 3309 . . . . . . 7 (((𝐻𝑧) ∈ 𝐾 ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · (𝐻𝑧))) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
11754, 112, 116syl2anc 693 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ (𝐺 ≠ (𝑉 × {(0g𝐷)}) ∧ 𝑧𝑉 ∧ (𝐺𝑧) = (1r𝐷))) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
1181173exp2 1285 . . . . 5 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → (𝐺 ≠ (𝑉 × {(0g𝐷)}) → (𝑧𝑉 → ((𝐺𝑧) = (1r𝐷) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟)))))
119118imp 445 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → (𝑧𝑉 → ((𝐺𝑧) = (1r𝐷) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))))
120119rexlimdv 3030 . . 3 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → (∃𝑧𝑉 (𝐺𝑧) = (1r𝐷) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟)))
12149, 120mpd 15 . 2 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝐺 ≠ (𝑉 × {(0g𝐷)})) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
12244, 121pm2.61dane 2881 1 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {csn 4177   × cxp 5112  cfv 5888  (class class class)co 6650  Basecbs 15857  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  Grpcgrp 17422  -gcsg 17424  1rcur 18501  Ringcrg 18547  LModclmod 18863  LVecclvec 19102  LFnlclfn 34344  LKerclk 34372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lvec 19103  df-lfl 34345  df-lkr 34373
This theorem is referenced by:  eqlkr2  34387  eqlkr3  34388
  Copyright terms: Public domain W3C validator