Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmodvsmdi Structured version   Visualization version   GIF version

Theorem lmodvsmdi 42163
Description: Multiple distributive law for scalar product (left-distributivity). (Contributed by AV, 5-Sep-2019.)
Hypotheses
Ref Expression
lmodvsmdi.v 𝑉 = (Base‘𝑊)
lmodvsmdi.f 𝐹 = (Scalar‘𝑊)
lmodvsmdi.s · = ( ·𝑠𝑊)
lmodvsmdi.k 𝐾 = (Base‘𝐹)
lmodvsmdi.p = (.g𝑊)
lmodvsmdi.e 𝐸 = (.g𝐹)
Assertion
Ref Expression
lmodvsmdi ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋))

Proof of Theorem lmodvsmdi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . . . . . . 9 (𝑥 = 0 → (𝑥 𝑋) = (0 𝑋))
21oveq2d 6666 . . . . . . . 8 (𝑥 = 0 → (𝑅 · (𝑥 𝑋)) = (𝑅 · (0 𝑋)))
3 oveq1 6657 . . . . . . . . 9 (𝑥 = 0 → (𝑥𝐸𝑅) = (0𝐸𝑅))
43oveq1d 6665 . . . . . . . 8 (𝑥 = 0 → ((𝑥𝐸𝑅) · 𝑋) = ((0𝐸𝑅) · 𝑋))
52, 4eqeq12d 2637 . . . . . . 7 (𝑥 = 0 → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · (0 𝑋)) = ((0𝐸𝑅) · 𝑋)))
65imbi2d 330 . . . . . 6 (𝑥 = 0 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0 𝑋)) = ((0𝐸𝑅) · 𝑋))))
7 oveq1 6657 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 𝑋) = (𝑦 𝑋))
87oveq2d 6666 . . . . . . . 8 (𝑥 = 𝑦 → (𝑅 · (𝑥 𝑋)) = (𝑅 · (𝑦 𝑋)))
9 oveq1 6657 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐸𝑅) = (𝑦𝐸𝑅))
109oveq1d 6665 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥𝐸𝑅) · 𝑋) = ((𝑦𝐸𝑅) · 𝑋))
118, 10eqeq12d 2637 . . . . . . 7 (𝑥 = 𝑦 → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)))
1211imbi2d 330 . . . . . 6 (𝑥 = 𝑦 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋))))
13 oveq1 6657 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑥 𝑋) = ((𝑦 + 1) 𝑋))
1413oveq2d 6666 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝑅 · (𝑥 𝑋)) = (𝑅 · ((𝑦 + 1) 𝑋)))
15 oveq1 6657 . . . . . . . . 9 (𝑥 = (𝑦 + 1) → (𝑥𝐸𝑅) = ((𝑦 + 1)𝐸𝑅))
1615oveq1d 6665 . . . . . . . 8 (𝑥 = (𝑦 + 1) → ((𝑥𝐸𝑅) · 𝑋) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
1714, 16eqeq12d 2637 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋)))
1817imbi2d 330 . . . . . 6 (𝑥 = (𝑦 + 1) → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))))
19 oveq1 6657 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥 𝑋) = (𝑁 𝑋))
2019oveq2d 6666 . . . . . . . 8 (𝑥 = 𝑁 → (𝑅 · (𝑥 𝑋)) = (𝑅 · (𝑁 𝑋)))
21 oveq1 6657 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑥𝐸𝑅) = (𝑁𝐸𝑅))
2221oveq1d 6665 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑥𝐸𝑅) · 𝑋) = ((𝑁𝐸𝑅) · 𝑋))
2320, 22eqeq12d 2637 . . . . . . 7 (𝑥 = 𝑁 → ((𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋) ↔ (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))
2423imbi2d 330 . . . . . 6 (𝑥 = 𝑁 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑥 𝑋)) = ((𝑥𝐸𝑅) · 𝑋)) ↔ (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋))))
25 simpr 477 . . . . . . . . . 10 ((𝑅𝐾𝑋𝑉) → 𝑋𝑉)
2625adantr 481 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑋𝑉)
27 lmodvsmdi.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
28 eqid 2622 . . . . . . . . . 10 (0g𝑊) = (0g𝑊)
29 lmodvsmdi.p . . . . . . . . . 10 = (.g𝑊)
3027, 28, 29mulg0 17546 . . . . . . . . 9 (𝑋𝑉 → (0 𝑋) = (0g𝑊))
3126, 30syl 17 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0 𝑋) = (0g𝑊))
3231oveq2d 6666 . . . . . . 7 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0 𝑋)) = (𝑅 · (0g𝑊)))
33 simpl 473 . . . . . . . . . . 11 ((𝑅𝐾𝑋𝑉) → 𝑅𝐾)
3433anim1i 592 . . . . . . . . . 10 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅𝐾𝑊 ∈ LMod))
3534ancomd 467 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑊 ∈ LMod ∧ 𝑅𝐾))
36 lmodvsmdi.f . . . . . . . . . 10 𝐹 = (Scalar‘𝑊)
37 lmodvsmdi.s . . . . . . . . . 10 · = ( ·𝑠𝑊)
38 lmodvsmdi.k . . . . . . . . . 10 𝐾 = (Base‘𝐹)
3936, 37, 38, 28lmodvs0 18897 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑅 · (0g𝑊)) = (0g𝑊))
4035, 39syl 17 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0g𝑊)) = (0g𝑊))
4125anim1i 592 . . . . . . . . . 10 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑋𝑉𝑊 ∈ LMod))
4241ancomd 467 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑊 ∈ LMod ∧ 𝑋𝑉))
43 eqid 2622 . . . . . . . . . 10 (0g𝐹) = (0g𝐹)
4427, 36, 37, 43, 28lmod0vs 18896 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g𝐹) · 𝑋) = (0g𝑊))
4542, 44syl 17 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0g𝐹) · 𝑋) = (0g𝑊))
4633adantr 481 . . . . . . . . . 10 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑅𝐾)
47 lmodvsmdi.e . . . . . . . . . . . 12 𝐸 = (.g𝐹)
4838, 43, 47mulg0 17546 . . . . . . . . . . 11 (𝑅𝐾 → (0𝐸𝑅) = (0g𝐹))
4948eqcomd 2628 . . . . . . . . . 10 (𝑅𝐾 → (0g𝐹) = (0𝐸𝑅))
5046, 49syl 17 . . . . . . . . 9 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (0g𝐹) = (0𝐸𝑅))
5150oveq1d 6665 . . . . . . . 8 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((0g𝐹) · 𝑋) = ((0𝐸𝑅) · 𝑋))
5240, 45, 513eqtr2d 2662 . . . . . . 7 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0g𝑊)) = ((0𝐸𝑅) · 𝑋))
5332, 52eqtrd 2656 . . . . . 6 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (0 𝑋)) = ((0𝐸𝑅) · 𝑋))
54 lmodgrp 18870 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
55 grpmnd 17429 . . . . . . . . . . . . . . 15 (𝑊 ∈ Grp → 𝑊 ∈ Mnd)
5654, 55syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝑊 ∈ Mnd)
5756ad2antll 765 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ Mnd)
58 simpl 473 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑦 ∈ ℕ0)
5926adantl 482 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑋𝑉)
60 eqid 2622 . . . . . . . . . . . . . 14 (+g𝑊) = (+g𝑊)
6127, 29, 60mulgnn0p1 17552 . . . . . . . . . . . . 13 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(+g𝑊)𝑋))
6257, 58, 59, 61syl3anc 1326 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(+g𝑊)𝑋))
6362oveq2d 6666 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑅 · ((𝑦 + 1) 𝑋)) = (𝑅 · ((𝑦 𝑋)(+g𝑊)𝑋)))
64 simpr 477 . . . . . . . . . . . . 13 (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → 𝑊 ∈ LMod)
6564adantl 482 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑊 ∈ LMod)
66 simprll 802 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝑅𝐾)
6727, 29mulgnn0cl 17558 . . . . . . . . . . . . 13 ((𝑊 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉) → (𝑦 𝑋) ∈ 𝑉)
6857, 58, 59, 67syl3anc 1326 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑦 𝑋) ∈ 𝑉)
6927, 60, 36, 37, 38lmodvsdi 18886 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑅𝐾 ∧ (𝑦 𝑋) ∈ 𝑉𝑋𝑉)) → (𝑅 · ((𝑦 𝑋)(+g𝑊)𝑋)) = ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)))
7065, 66, 68, 59, 69syl13anc 1328 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑅 · ((𝑦 𝑋)(+g𝑊)𝑋)) = ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)))
7163, 70eqtrd 2656 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑅 · ((𝑦 + 1) 𝑋)) = ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)))
72 oveq1 6657 . . . . . . . . . 10 ((𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋) → ((𝑅 · (𝑦 𝑋))(+g𝑊)(𝑅 · 𝑋)) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
7371, 72sylan9eq 2676 . . . . . . . . 9 (((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
7436lmodfgrp 18872 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → 𝐹 ∈ Grp)
75 grpmnd 17429 . . . . . . . . . . . . . . 15 (𝐹 ∈ Grp → 𝐹 ∈ Mnd)
7674, 75syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝐹 ∈ Mnd)
7776ad2antll 765 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → 𝐹 ∈ Mnd)
7838, 47mulgnn0cl 17558 . . . . . . . . . . . . 13 ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑅𝐾) → (𝑦𝐸𝑅) ∈ 𝐾)
7977, 58, 66, 78syl3anc 1326 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (𝑦𝐸𝑅) ∈ 𝐾)
80 eqid 2622 . . . . . . . . . . . . 13 (+g𝐹) = (+g𝐹)
8127, 60, 36, 37, 38, 80lmodvsdir 18887 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ ((𝑦𝐸𝑅) ∈ 𝐾𝑅𝐾𝑋𝑉)) → (((𝑦𝐸𝑅)(+g𝐹)𝑅) · 𝑋) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
8265, 79, 66, 59, 81syl13anc 1328 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝑅)(+g𝐹)𝑅) · 𝑋) = (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)))
8338, 47, 80mulgnn0p1 17552 . . . . . . . . . . . . . 14 ((𝐹 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑅𝐾) → ((𝑦 + 1)𝐸𝑅) = ((𝑦𝐸𝑅)(+g𝐹)𝑅))
8477, 58, 66, 83syl3anc 1326 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦 + 1)𝐸𝑅) = ((𝑦𝐸𝑅)(+g𝐹)𝑅))
8584eqcomd 2628 . . . . . . . . . . . 12 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → ((𝑦𝐸𝑅)(+g𝐹)𝑅) = ((𝑦 + 1)𝐸𝑅))
8685oveq1d 6665 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝑅)(+g𝐹)𝑅) · 𝑋) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
8782, 86eqtr3d 2658 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) → (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
8887adantr 481 . . . . . . . . 9 (((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (((𝑦𝐸𝑅) · 𝑋)(+g𝑊)(𝑅 · 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
8973, 88eqtrd 2656 . . . . . . . 8 (((𝑦 ∈ ℕ0 ∧ ((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod)) ∧ (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))
9089exp31 630 . . . . . . 7 (𝑦 ∈ ℕ0 → (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → ((𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))))
9190a2d 29 . . . . . 6 (𝑦 ∈ ℕ0 → ((((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑦 𝑋)) = ((𝑦𝐸𝑅) · 𝑋)) → (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · ((𝑦 + 1) 𝑋)) = (((𝑦 + 1)𝐸𝑅) · 𝑋))))
926, 12, 18, 24, 53, 91nn0ind 11472 . . . . 5 (𝑁 ∈ ℕ0 → (((𝑅𝐾𝑋𝑉) ∧ 𝑊 ∈ LMod) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))
9392exp4c 636 . . . 4 (𝑁 ∈ ℕ0 → (𝑅𝐾 → (𝑋𝑉 → (𝑊 ∈ LMod → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))))
9493com12 32 . . 3 (𝑅𝐾 → (𝑁 ∈ ℕ0 → (𝑋𝑉 → (𝑊 ∈ LMod → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))))
95943imp 1256 . 2 ((𝑅𝐾𝑁 ∈ ℕ0𝑋𝑉) → (𝑊 ∈ LMod → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋)))
9695impcom 446 1 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑁 ∈ ℕ0𝑋𝑉)) → (𝑅 · (𝑁 𝑋)) = ((𝑁𝐸𝑅) · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  0cn0 11292  Basecbs 15857  +gcplusg 15941  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  Mndcmnd 17294  Grpcgrp 17422  .gcmg 17540  LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mulg 17541  df-mgp 18490  df-ring 18549  df-lmod 18865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator