Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepsprlem Structured version   Visualization version   GIF version

Theorem ldepsprlem 42261
Description: Lemma for ldepspr 42262. (Contributed by AV, 16-Apr-2019.)
Hypotheses
Ref Expression
snlindsntor.b 𝐵 = (Base‘𝑀)
snlindsntor.r 𝑅 = (Scalar‘𝑀)
snlindsntor.s 𝑆 = (Base‘𝑅)
snlindsntor.0 0 = (0g𝑅)
snlindsntor.z 𝑍 = (0g𝑀)
snlindsntor.t · = ( ·𝑠𝑀)
ldepsprlem.1 1 = (1r𝑅)
ldepsprlem.n 𝑁 = (invg𝑅)
Assertion
Ref Expression
ldepsprlem ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍))

Proof of Theorem ldepsprlem
StepHypRef Expression
1 oveq2 6658 . . . 4 (𝑋 = (𝐴 · 𝑌) → ( 1 · 𝑋) = ( 1 · (𝐴 · 𝑌)))
21oveq1d 6665 . . 3 (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g𝑀)((𝑁𝐴) · 𝑌)) = (( 1 · (𝐴 · 𝑌))(+g𝑀)((𝑁𝐴) · 𝑌)))
3 simpl 473 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → 𝑀 ∈ LMod)
4 snlindsntor.r . . . . . . . . 9 𝑅 = (Scalar‘𝑀)
5 snlindsntor.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
6 ldepsprlem.1 . . . . . . . . 9 1 = (1r𝑅)
74, 5, 6lmod1cl 18890 . . . . . . . 8 (𝑀 ∈ LMod → 1𝑆)
87adantr 481 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → 1𝑆)
9 simpr3 1069 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → 𝐴𝑆)
10 simpr2 1068 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → 𝑌𝐵)
11 snlindsntor.b . . . . . . . 8 𝐵 = (Base‘𝑀)
12 snlindsntor.t . . . . . . . 8 · = ( ·𝑠𝑀)
13 eqid 2622 . . . . . . . 8 (.r𝑅) = (.r𝑅)
1411, 4, 12, 5, 13lmodvsass 18888 . . . . . . 7 ((𝑀 ∈ LMod ∧ ( 1𝑆𝐴𝑆𝑌𝐵)) → (( 1 (.r𝑅)𝐴) · 𝑌) = ( 1 · (𝐴 · 𝑌)))
153, 8, 9, 10, 14syl13anc 1328 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (( 1 (.r𝑅)𝐴) · 𝑌) = ( 1 · (𝐴 · 𝑌)))
1615eqcomd 2628 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ( 1 · (𝐴 · 𝑌)) = (( 1 (.r𝑅)𝐴) · 𝑌))
1716oveq1d 6665 . . . 4 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (( 1 · (𝐴 · 𝑌))(+g𝑀)((𝑁𝐴) · 𝑌)) = ((( 1 (.r𝑅)𝐴) · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)))
184lmodring 18871 . . . . . . . 8 (𝑀 ∈ LMod → 𝑅 ∈ Ring)
19 simp3 1063 . . . . . . . 8 ((𝑋𝐵𝑌𝐵𝐴𝑆) → 𝐴𝑆)
205, 13, 6ringlidm 18571 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐴𝑆) → ( 1 (.r𝑅)𝐴) = 𝐴)
2118, 19, 20syl2an 494 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ( 1 (.r𝑅)𝐴) = 𝐴)
2221oveq1d 6665 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (( 1 (.r𝑅)𝐴) · 𝑌) = (𝐴 · 𝑌))
2322oveq1d 6665 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ((( 1 (.r𝑅)𝐴) · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)) = ((𝐴 · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)))
244lmodfgrp 18872 . . . . . . 7 (𝑀 ∈ LMod → 𝑅 ∈ Grp)
25 ldepsprlem.n . . . . . . . 8 𝑁 = (invg𝑅)
265, 25grpinvcl 17467 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐴𝑆) → (𝑁𝐴) ∈ 𝑆)
2724, 19, 26syl2an 494 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝑁𝐴) ∈ 𝑆)
28 eqid 2622 . . . . . . 7 (+g𝑀) = (+g𝑀)
29 eqid 2622 . . . . . . 7 (+g𝑅) = (+g𝑅)
3011, 28, 4, 12, 5, 29lmodvsdir 18887 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝐴𝑆 ∧ (𝑁𝐴) ∈ 𝑆𝑌𝐵)) → ((𝐴(+g𝑅)(𝑁𝐴)) · 𝑌) = ((𝐴 · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)))
313, 9, 27, 10, 30syl13anc 1328 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ((𝐴(+g𝑅)(𝑁𝐴)) · 𝑌) = ((𝐴 · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)))
32 snlindsntor.0 . . . . . . . . 9 0 = (0g𝑅)
335, 29, 32, 25grprinv 17469 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝐴𝑆) → (𝐴(+g𝑅)(𝑁𝐴)) = 0 )
3424, 19, 33syl2an 494 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝐴(+g𝑅)(𝑁𝐴)) = 0 )
3534oveq1d 6665 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ((𝐴(+g𝑅)(𝑁𝐴)) · 𝑌) = ( 0 · 𝑌))
36 snlindsntor.z . . . . . . . 8 𝑍 = (0g𝑀)
3711, 4, 12, 32, 36lmod0vs 18896 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑌𝐵) → ( 0 · 𝑌) = 𝑍)
38373ad2antr2 1227 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ( 0 · 𝑌) = 𝑍)
3935, 38eqtrd 2656 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ((𝐴(+g𝑅)(𝑁𝐴)) · 𝑌) = 𝑍)
4023, 31, 393eqtr2d 2662 . . . 4 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → ((( 1 (.r𝑅)𝐴) · 𝑌)(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍)
4117, 40eqtrd 2656 . . 3 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (( 1 · (𝐴 · 𝑌))(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍)
422, 41sylan9eqr 2678 . 2 (((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) ∧ 𝑋 = (𝐴 · 𝑌)) → (( 1 · 𝑋)(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍)
4342ex 450 1 ((𝑀 ∈ LMod ∧ (𝑋𝐵𝑌𝐵𝐴𝑆)) → (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g𝑀)((𝑁𝐴) · 𝑌)) = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  Grpcgrp 17422  invgcminusg 17423  1rcur 18501  Ringcrg 18547  LModclmod 18863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865
This theorem is referenced by:  ldepspr  42262
  Copyright terms: Public domain W3C validator