Proof of Theorem lnhl
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 477 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 = 𝐵) → 𝐶 = 𝐵) |
| 2 | | ishlg.p |
. . . . . 6
⊢ 𝑃 = (Base‘𝐺) |
| 3 | | eqid 2622 |
. . . . . 6
⊢
(dist‘𝐺) =
(dist‘𝐺) |
| 4 | | ishlg.i |
. . . . . 6
⊢ 𝐼 = (Itv‘𝐺) |
| 5 | | hlln.1 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 6 | | ishlg.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 7 | | ishlg.c |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 8 | 2, 3, 4, 5, 6, 7 | tgbtwntriv2 25382 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐶)) |
| 9 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴𝐼𝐶)) |
| 10 | 1, 9 | eqeltrrd 2702 |
. . 3
⊢ ((𝜑 ∧ 𝐶 = 𝐵) → 𝐵 ∈ (𝐴𝐼𝐶)) |
| 11 | 10 | olcd 408 |
. 2
⊢ ((𝜑 ∧ 𝐶 = 𝐵) → (𝐶(𝐾‘𝐵)𝐴 ∨ 𝐵 ∈ (𝐴𝐼𝐶))) |
| 12 | | lnhl.1 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ (𝐴𝐿𝐵)) |
| 13 | | lnhl.l |
. . . . . . 7
⊢ 𝐿 = (LineG‘𝐺) |
| 14 | | ishlg.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 15 | 2, 13, 4, 5, 6, 14,
12 | tglngne 25445 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 16 | 2, 13, 4, 5, 6, 14,
15, 7 | tgellng 25448 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))) |
| 17 | 12, 16 | mpbid 222 |
. . . . 5
⊢ (𝜑 → (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶))) |
| 18 | | df-3or 1038 |
. . . . 5
⊢ ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐴𝐼𝐶)) ↔ ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶))) |
| 19 | 17, 18 | sylib 208 |
. . . 4
⊢ (𝜑 → ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶))) |
| 20 | 19 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶))) |
| 21 | | ishlg.k |
. . . . . . . 8
⊢ 𝐾 = (hlG‘𝐺) |
| 22 | 2, 4, 21, 7, 6, 14, 5 | ishlg 25497 |
. . . . . . 7
⊢ (𝜑 → (𝐶(𝐾‘𝐵)𝐴 ↔ (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))) |
| 23 | 22 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → (𝐶(𝐾‘𝐵)𝐴 ↔ (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))) |
| 24 | | df-3an 1039 |
. . . . . 6
⊢ ((𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))) ↔ ((𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)))) |
| 25 | 23, 24 | syl6bb 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → (𝐶(𝐾‘𝐵)𝐴 ↔ ((𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))) |
| 26 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → 𝐶 ≠ 𝐵) |
| 27 | 15 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → 𝐴 ≠ 𝐵) |
| 28 | 26, 27 | jca 554 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → (𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
| 29 | 28 | biantrurd 529 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → ((𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)) ↔ ((𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶))))) |
| 30 | 5 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → 𝐺 ∈ TarskiG) |
| 31 | 14 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → 𝐵 ∈ 𝑃) |
| 32 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → 𝐶 ∈ 𝑃) |
| 33 | 6 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → 𝐴 ∈ 𝑃) |
| 34 | 2, 3, 4, 30, 31, 32, 33 | tgbtwncomb 25384 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → (𝐶 ∈ (𝐵𝐼𝐴) ↔ 𝐶 ∈ (𝐴𝐼𝐵))) |
| 35 | 2, 3, 4, 30, 31, 33, 32 | tgbtwncomb 25384 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → (𝐴 ∈ (𝐵𝐼𝐶) ↔ 𝐴 ∈ (𝐶𝐼𝐵))) |
| 36 | 34, 35 | orbi12d 746 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → ((𝐶 ∈ (𝐵𝐼𝐴) ∨ 𝐴 ∈ (𝐵𝐼𝐶)) ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)))) |
| 37 | 25, 29, 36 | 3bitr2d 296 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → (𝐶(𝐾‘𝐵)𝐴 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)))) |
| 38 | 37 | orbi1d 739 |
. . 3
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → ((𝐶(𝐾‘𝐵)𝐴 ∨ 𝐵 ∈ (𝐴𝐼𝐶)) ↔ ((𝐶 ∈ (𝐴𝐼𝐵) ∨ 𝐴 ∈ (𝐶𝐼𝐵)) ∨ 𝐵 ∈ (𝐴𝐼𝐶)))) |
| 39 | 20, 38 | mpbird 247 |
. 2
⊢ ((𝜑 ∧ 𝐶 ≠ 𝐵) → (𝐶(𝐾‘𝐵)𝐴 ∨ 𝐵 ∈ (𝐴𝐼𝐶))) |
| 40 | 11, 39 | pm2.61dane 2881 |
1
⊢ (𝜑 → (𝐶(𝐾‘𝐵)𝐴 ∨ 𝐵 ∈ (𝐴𝐼𝐶))) |