MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnhl Structured version   Visualization version   Unicode version

Theorem lnhl 25510
Description: Either a point  C on the line AB is on the same side as  A or on the opposite side. (Contributed by Thierry Arnoux, 21-Sep-2020.)
Hypotheses
Ref Expression
ishlg.p  |-  P  =  ( Base `  G
)
ishlg.i  |-  I  =  (Itv `  G )
ishlg.k  |-  K  =  (hlG `  G )
ishlg.a  |-  ( ph  ->  A  e.  P )
ishlg.b  |-  ( ph  ->  B  e.  P )
ishlg.c  |-  ( ph  ->  C  e.  P )
hlln.1  |-  ( ph  ->  G  e. TarskiG )
hltr.d  |-  ( ph  ->  D  e.  P )
lnhl.l  |-  L  =  (LineG `  G )
lnhl.1  |-  ( ph  ->  C  e.  ( A L B ) )
Assertion
Ref Expression
lnhl  |-  ( ph  ->  ( C ( K `
 B ) A  \/  B  e.  ( A I C ) ) )

Proof of Theorem lnhl
StepHypRef Expression
1 simpr 477 . . . 4  |-  ( (
ph  /\  C  =  B )  ->  C  =  B )
2 ishlg.p . . . . . 6  |-  P  =  ( Base `  G
)
3 eqid 2622 . . . . . 6  |-  ( dist `  G )  =  (
dist `  G )
4 ishlg.i . . . . . 6  |-  I  =  (Itv `  G )
5 hlln.1 . . . . . 6  |-  ( ph  ->  G  e. TarskiG )
6 ishlg.a . . . . . 6  |-  ( ph  ->  A  e.  P )
7 ishlg.c . . . . . 6  |-  ( ph  ->  C  e.  P )
82, 3, 4, 5, 6, 7tgbtwntriv2 25382 . . . . 5  |-  ( ph  ->  C  e.  ( A I C ) )
98adantr 481 . . . 4  |-  ( (
ph  /\  C  =  B )  ->  C  e.  ( A I C ) )
101, 9eqeltrrd 2702 . . 3  |-  ( (
ph  /\  C  =  B )  ->  B  e.  ( A I C ) )
1110olcd 408 . 2  |-  ( (
ph  /\  C  =  B )  ->  ( C ( K `  B ) A  \/  B  e.  ( A I C ) ) )
12 lnhl.1 . . . . . 6  |-  ( ph  ->  C  e.  ( A L B ) )
13 lnhl.l . . . . . . 7  |-  L  =  (LineG `  G )
14 ishlg.b . . . . . . 7  |-  ( ph  ->  B  e.  P )
152, 13, 4, 5, 6, 14, 12tglngne 25445 . . . . . . 7  |-  ( ph  ->  A  =/=  B )
162, 13, 4, 5, 6, 14, 15, 7tgellng 25448 . . . . . 6  |-  ( ph  ->  ( C  e.  ( A L B )  <-> 
( C  e.  ( A I B )  \/  A  e.  ( C I B )  \/  B  e.  ( A I C ) ) ) )
1712, 16mpbid 222 . . . . 5  |-  ( ph  ->  ( C  e.  ( A I B )  \/  A  e.  ( C I B )  \/  B  e.  ( A I C ) ) )
18 df-3or 1038 . . . . 5  |-  ( ( C  e.  ( A I B )  \/  A  e.  ( C I B )  \/  B  e.  ( A I C ) )  <-> 
( ( C  e.  ( A I B )  \/  A  e.  ( C I B ) )  \/  B  e.  ( A I C ) ) )
1917, 18sylib 208 . . . 4  |-  ( ph  ->  ( ( C  e.  ( A I B )  \/  A  e.  ( C I B ) )  \/  B  e.  ( A I C ) ) )
2019adantr 481 . . 3  |-  ( (
ph  /\  C  =/=  B )  ->  ( ( C  e.  ( A I B )  \/  A  e.  ( C I B ) )  \/  B  e.  ( A I C ) ) )
21 ishlg.k . . . . . . . 8  |-  K  =  (hlG `  G )
222, 4, 21, 7, 6, 14, 5ishlg 25497 . . . . . . 7  |-  ( ph  ->  ( C ( K `
 B ) A  <-> 
( C  =/=  B  /\  A  =/=  B  /\  ( C  e.  ( B I A )  \/  A  e.  ( B I C ) ) ) ) )
2322adantr 481 . . . . . 6  |-  ( (
ph  /\  C  =/=  B )  ->  ( C
( K `  B
) A  <->  ( C  =/=  B  /\  A  =/= 
B  /\  ( C  e.  ( B I A )  \/  A  e.  ( B I C ) ) ) ) )
24 df-3an 1039 . . . . . 6  |-  ( ( C  =/=  B  /\  A  =/=  B  /\  ( C  e.  ( B I A )  \/  A  e.  ( B I C ) ) )  <->  ( ( C  =/=  B  /\  A  =/=  B )  /\  ( C  e.  ( B I A )  \/  A  e.  ( B I C ) ) ) )
2523, 24syl6bb 276 . . . . 5  |-  ( (
ph  /\  C  =/=  B )  ->  ( C
( K `  B
) A  <->  ( ( C  =/=  B  /\  A  =/=  B )  /\  ( C  e.  ( B I A )  \/  A  e.  ( B I C ) ) ) ) )
26 simpr 477 . . . . . . 7  |-  ( (
ph  /\  C  =/=  B )  ->  C  =/=  B )
2715adantr 481 . . . . . . 7  |-  ( (
ph  /\  C  =/=  B )  ->  A  =/=  B )
2826, 27jca 554 . . . . . 6  |-  ( (
ph  /\  C  =/=  B )  ->  ( C  =/=  B  /\  A  =/= 
B ) )
2928biantrurd 529 . . . . 5  |-  ( (
ph  /\  C  =/=  B )  ->  ( ( C  e.  ( B I A )  \/  A  e.  ( B I C ) )  <->  ( ( C  =/=  B  /\  A  =/=  B )  /\  ( C  e.  ( B I A )  \/  A  e.  ( B I C ) ) ) ) )
305adantr 481 . . . . . . 7  |-  ( (
ph  /\  C  =/=  B )  ->  G  e. TarskiG )
3114adantr 481 . . . . . . 7  |-  ( (
ph  /\  C  =/=  B )  ->  B  e.  P )
327adantr 481 . . . . . . 7  |-  ( (
ph  /\  C  =/=  B )  ->  C  e.  P )
336adantr 481 . . . . . . 7  |-  ( (
ph  /\  C  =/=  B )  ->  A  e.  P )
342, 3, 4, 30, 31, 32, 33tgbtwncomb 25384 . . . . . 6  |-  ( (
ph  /\  C  =/=  B )  ->  ( C  e.  ( B I A )  <->  C  e.  ( A I B ) ) )
352, 3, 4, 30, 31, 33, 32tgbtwncomb 25384 . . . . . 6  |-  ( (
ph  /\  C  =/=  B )  ->  ( A  e.  ( B I C )  <->  A  e.  ( C I B ) ) )
3634, 35orbi12d 746 . . . . 5  |-  ( (
ph  /\  C  =/=  B )  ->  ( ( C  e.  ( B I A )  \/  A  e.  ( B I C ) )  <->  ( C  e.  ( A I B )  \/  A  e.  ( C I B ) ) ) )
3725, 29, 363bitr2d 296 . . . 4  |-  ( (
ph  /\  C  =/=  B )  ->  ( C
( K `  B
) A  <->  ( C  e.  ( A I B )  \/  A  e.  ( C I B ) ) ) )
3837orbi1d 739 . . 3  |-  ( (
ph  /\  C  =/=  B )  ->  ( ( C ( K `  B ) A  \/  B  e.  ( A I C ) )  <->  ( ( C  e.  ( A I B )  \/  A  e.  ( C I B ) )  \/  B  e.  ( A I C ) ) ) )
3920, 38mpbird 247 . 2  |-  ( (
ph  /\  C  =/=  B )  ->  ( C
( K `  B
) A  \/  B  e.  ( A I C ) ) )
4011, 39pm2.61dane 2881 1  |-  ( ph  ->  ( C ( K `
 B ) A  \/  B  e.  ( A I C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  hlGchlg 25495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-hlg 25496
This theorem is referenced by:  hlpasch  25648
  Copyright terms: Public domain W3C validator