MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcgrex Structured version   Visualization version   GIF version

Theorem hlcgrex 25511
Description: Construct a point on a half-line, at a given distance of its origin. (Contributed by Thierry Arnoux, 1-Aug-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
hlcgrex.m = (dist‘𝐺)
hlcgrex.1 (𝜑𝐷𝐴)
hlcgrex.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
hlcgrex (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐾   𝑥,𝐼   𝑥,𝑃   𝜑,𝑥
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem hlcgrex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ishlg.p . . . 4 𝑃 = (Base‘𝐺)
2 hlcgrex.m . . . 4 = (dist‘𝐺)
3 ishlg.i . . . 4 𝐼 = (Itv‘𝐺)
4 hlln.1 . . . . 5 (𝜑𝐺 ∈ TarskiG)
54ad2antrr 762 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐺 ∈ TarskiG)
6 simplr 792 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝑦𝑃)
7 ishlg.a . . . . 5 (𝜑𝐴𝑃)
87ad2antrr 762 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐴𝑃)
9 ishlg.b . . . . 5 (𝜑𝐵𝑃)
109ad2antrr 762 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐵𝑃)
11 ishlg.c . . . . 5 (𝜑𝐶𝑃)
1211ad2antrr 762 . . . 4 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → 𝐶𝑃)
131, 2, 3, 5, 6, 8, 10, 12axtgsegcon 25363 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → ∃𝑥𝑃 (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶)))
145ad2antrr 762 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐺 ∈ TarskiG)
1510ad2antrr 762 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐵𝑃)
1612ad2antrr 762 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐶𝑃)
17 simplr 792 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑥𝑃)
188ad2antrr 762 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴𝑃)
19 simprr 796 . . . . . . . . . . 11 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝐴 𝑥) = (𝐵 𝐶))
201, 2, 3, 14, 18, 17, 15, 16, 19tgcgrcoml 25374 . . . . . . . . . 10 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥 𝐴) = (𝐵 𝐶))
2120eqcomd 2628 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝐵 𝐶) = (𝑥 𝐴))
22 hlcgrex.2 . . . . . . . . . 10 (𝜑𝐵𝐶)
2322ad4antr 768 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐵𝐶)
241, 2, 3, 14, 15, 16, 17, 18, 21, 23tgcgrneq 25378 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑥𝐴)
25 hlcgrex.1 . . . . . . . . 9 (𝜑𝐷𝐴)
2625ad4antr 768 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐷𝐴)
276ad2antrr 762 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑦𝑃)
28 hltr.d . . . . . . . . . 10 (𝜑𝐷𝑃)
2928ad4antr 768 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐷𝑃)
30 simpllr 799 . . . . . . . . . . 11 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦))
3130simprd 479 . . . . . . . . . 10 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴𝑦)
3231necomd 2849 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑦𝐴)
33 simprl 794 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴 ∈ (𝑦𝐼𝑥))
3430simpld 475 . . . . . . . . . 10 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴 ∈ (𝐷𝐼𝑦))
351, 2, 3, 14, 29, 18, 27, 34tgbtwncom 25383 . . . . . . . . 9 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝐴 ∈ (𝑦𝐼𝐷))
361, 3, 14, 27, 18, 17, 29, 32, 33, 35tgbtwnconn2 25471 . . . . . . . 8 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝑥)))
3724, 26, 363jca 1242 . . . . . . 7 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥𝐴𝐷𝐴 ∧ (𝑥 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝑥))))
38 ishlg.k . . . . . . . 8 𝐾 = (hlG‘𝐺)
391, 3, 38, 17, 29, 18, 14ishlg 25497 . . . . . . 7 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥(𝐾𝐴)𝐷 ↔ (𝑥𝐴𝐷𝐴 ∧ (𝑥 ∈ (𝐴𝐼𝐷) ∨ 𝐷 ∈ (𝐴𝐼𝑥)))))
4037, 39mpbird 247 . . . . . 6 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → 𝑥(𝐾𝐴)𝐷)
4140, 19jca 554 . . . . 5 (((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) ∧ (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶))) → (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
4241ex 450 . . . 4 ((((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) ∧ 𝑥𝑃) → ((𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶)) → (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶))))
4342reximdva 3017 . . 3 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → (∃𝑥𝑃 (𝐴 ∈ (𝑦𝐼𝑥) ∧ (𝐴 𝑥) = (𝐵 𝐶)) → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶))))
4413, 43mpd 15 . 2 (((𝜑𝑦𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦)) → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
45 fvex 6201 . . . . . 6 (Base‘𝐺) ∈ V
461, 45eqeltri 2697 . . . . 5 𝑃 ∈ V
4746a1i 11 . . . 4 (𝜑𝑃 ∈ V)
4847, 9, 11, 22nehash2 13256 . . 3 (𝜑 → 2 ≤ (#‘𝑃))
491, 2, 3, 4, 28, 7, 48tgbtwndiff 25401 . 2 (𝜑 → ∃𝑦𝑃 (𝐴 ∈ (𝐷𝐼𝑦) ∧ 𝐴𝑦))
5044, 49r19.29a 3078 1 (𝜑 → ∃𝑥𝑃 (𝑥(𝐾𝐴)𝐷 ∧ (𝐴 𝑥) = (𝐵 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  Vcvv 3200   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  hlGchlg 25495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-hlg 25496
This theorem is referenced by:  hlcgreu  25513  trgcopy  25696  cgraswap  25712  cgracom  25714  cgratr  25715  acopy  25724  acopyeu  25725  tgasa1  25739
  Copyright terms: Public domain W3C validator