![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrelnq | Structured version Visualization version GIF version |
Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelnq | ⊢ <Q ⊆ (Q × Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltnq 9740 | . 2 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
2 | inss2 3834 | . 2 ⊢ ( <pQ ∩ (Q × Q)) ⊆ (Q × Q) | |
3 | 1, 2 | eqsstri 3635 | 1 ⊢ <Q ⊆ (Q × Q) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3573 ⊆ wss 3574 × cxp 5112 <pQ cltpq 9672 Qcnq 9674 <Q cltq 9680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-ltnq 9740 |
This theorem is referenced by: lterpq 9792 ltanq 9793 ltmnq 9794 ltexnq 9797 ltbtwnnq 9800 ltrnq 9801 prcdnq 9815 prnmadd 9819 genpcd 9828 nqpr 9836 1idpr 9851 prlem934 9855 ltexprlem4 9861 prlem936 9869 reclem2pr 9870 reclem3pr 9871 reclem4pr 9872 |
Copyright terms: Public domain | W3C validator |