MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmnq Structured version   Visualization version   GIF version

Theorem ltmnq 9794
Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltmnq (𝐶Q → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))

Proof of Theorem ltmnq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulnqf 9771 . . 3 ·Q :(Q × Q)⟶Q
21fdmi 6052 . 2 dom ·Q = (Q × Q)
3 ltrelnq 9748 . 2 <Q ⊆ (Q × Q)
4 0nnq 9746 . 2 ¬ ∅ ∈ Q
5 elpqn 9747 . . . . . . . . . 10 (𝐶Q𝐶 ∈ (N × N))
653ad2ant3 1084 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐶 ∈ (N × N))
7 xp1st 7198 . . . . . . . . 9 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
86, 7syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (1st𝐶) ∈ N)
9 xp2nd 7199 . . . . . . . . 9 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
106, 9syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐶) ∈ N)
11 mulclpi 9715 . . . . . . . 8 (((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N) → ((1st𝐶) ·N (2nd𝐶)) ∈ N)
128, 10, 11syl2anc 693 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐶) ·N (2nd𝐶)) ∈ N)
13 ltmpi 9726 . . . . . . 7 (((1st𝐶) ·N (2nd𝐶)) ∈ N → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
1412, 13syl 17 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
15 fvex 6201 . . . . . . . 8 (1st𝐶) ∈ V
16 fvex 6201 . . . . . . . 8 (2nd𝐶) ∈ V
17 fvex 6201 . . . . . . . 8 (1st𝐴) ∈ V
18 mulcompi 9718 . . . . . . . 8 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
19 mulasspi 9719 . . . . . . . 8 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
20 fvex 6201 . . . . . . . 8 (2nd𝐵) ∈ V
2115, 16, 17, 18, 19, 20caov4 6865 . . . . . . 7 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵)))
22 fvex 6201 . . . . . . . 8 (1st𝐵) ∈ V
23 fvex 6201 . . . . . . . 8 (2nd𝐴) ∈ V
2415, 16, 22, 18, 19, 23caov4 6865 . . . . . . 7 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴)))
2521, 24breq12i 4662 . . . . . 6 ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵))) <N (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴))))
2614, 25syl6bb 276 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵))) <N (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴)))))
27 ordpipq 9764 . . . . 5 (⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩ ↔ (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵))) <N (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴))))
2826, 27syl6bbr 278 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩))
29 elpqn 9747 . . . . . . 7 (𝐴Q𝐴 ∈ (N × N))
30293ad2ant1 1082 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐴 ∈ (N × N))
31 mulpipq2 9761 . . . . . 6 ((𝐶 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐶 ·pQ 𝐴) = ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩)
326, 30, 31syl2anc 693 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·pQ 𝐴) = ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩)
33 elpqn 9747 . . . . . . 7 (𝐵Q𝐵 ∈ (N × N))
34333ad2ant2 1083 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐵 ∈ (N × N))
35 mulpipq2 9761 . . . . . 6 ((𝐶 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐶 ·pQ 𝐵) = ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩)
366, 34, 35syl2anc 693 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·pQ 𝐵) = ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩)
3732, 36breq12d 4666 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵) ↔ ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩))
3828, 37bitr4d 271 . . 3 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵)))
39 ordpinq 9765 . . . 4 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
40393adant3 1081 . . 3 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
41 mulpqnq 9763 . . . . . . 7 ((𝐶Q𝐴Q) → (𝐶 ·Q 𝐴) = ([Q]‘(𝐶 ·pQ 𝐴)))
4241ancoms 469 . . . . . 6 ((𝐴Q𝐶Q) → (𝐶 ·Q 𝐴) = ([Q]‘(𝐶 ·pQ 𝐴)))
43423adant2 1080 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·Q 𝐴) = ([Q]‘(𝐶 ·pQ 𝐴)))
44 mulpqnq 9763 . . . . . . 7 ((𝐶Q𝐵Q) → (𝐶 ·Q 𝐵) = ([Q]‘(𝐶 ·pQ 𝐵)))
4544ancoms 469 . . . . . 6 ((𝐵Q𝐶Q) → (𝐶 ·Q 𝐵) = ([Q]‘(𝐶 ·pQ 𝐵)))
46453adant1 1079 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·Q 𝐵) = ([Q]‘(𝐶 ·pQ 𝐵)))
4743, 46breq12d 4666 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵) ↔ ([Q]‘(𝐶 ·pQ 𝐴)) <Q ([Q]‘(𝐶 ·pQ 𝐵))))
48 lterpq 9792 . . . 4 ((𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵) ↔ ([Q]‘(𝐶 ·pQ 𝐴)) <Q ([Q]‘(𝐶 ·pQ 𝐵)))
4947, 48syl6bbr 278 . . 3 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵) ↔ (𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵)))
5038, 40, 493bitr4d 300 . 2 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
512, 3, 4, 50ndmovord 6824 1 (𝐶Q → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037   = wceq 1483  wcel 1990  cop 4183   class class class wbr 4653   × cxp 5112  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Ncnpi 9666   ·N cmi 9668   <N clti 9669   ·pQ cmpq 9671   <pQ cltpq 9672  Qcnq 9674  [Q]cerq 9676   ·Q cmq 9678   <Q cltq 9680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-mi 9696  df-lti 9697  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-mq 9737  df-1nq 9738  df-ltnq 9740
This theorem is referenced by:  ltaddnq  9796  ltrnq  9801  addclprlem1  9838  mulclprlem  9841  mulclpr  9842  distrlem4pr  9848  1idpr  9851  prlem934  9855  prlem936  9869  reclem3pr  9871  reclem4pr  9872
  Copyright terms: Public domain W3C validator