MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reclem3pr Structured version   Visualization version   GIF version

Theorem reclem3pr 9871
Description: Lemma for Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
reclempr.1 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
Assertion
Ref Expression
reclem3pr (𝐴P → 1P ⊆ (𝐴 ·P 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem reclem3pr
Dummy variables 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-1p 9804 . . . 4 1P = {𝑤𝑤 <Q 1Q}
21abeq2i 2735 . . 3 (𝑤 ∈ 1P𝑤 <Q 1Q)
3 ltrnq 9801 . . . . . . 7 (𝑤 <Q 1Q ↔ (*Q‘1Q) <Q (*Q𝑤))
4 mulcomnq 9775 . . . . . . . . 9 ((*Q‘1Q) ·Q 1Q) = (1Q ·Q (*Q‘1Q))
5 1nq 9750 . . . . . . . . . 10 1QQ
6 recclnq 9788 . . . . . . . . . 10 (1QQ → (*Q‘1Q) ∈ Q)
7 mulidnq 9785 . . . . . . . . . 10 ((*Q‘1Q) ∈ Q → ((*Q‘1Q) ·Q 1Q) = (*Q‘1Q))
85, 6, 7mp2b 10 . . . . . . . . 9 ((*Q‘1Q) ·Q 1Q) = (*Q‘1Q)
9 recidnq 9787 . . . . . . . . . 10 (1QQ → (1Q ·Q (*Q‘1Q)) = 1Q)
105, 9ax-mp 5 . . . . . . . . 9 (1Q ·Q (*Q‘1Q)) = 1Q
114, 8, 103eqtr3i 2652 . . . . . . . 8 (*Q‘1Q) = 1Q
1211breq1i 4660 . . . . . . 7 ((*Q‘1Q) <Q (*Q𝑤) ↔ 1Q <Q (*Q𝑤))
133, 12bitri 264 . . . . . 6 (𝑤 <Q 1Q ↔ 1Q <Q (*Q𝑤))
14 prlem936 9869 . . . . . 6 ((𝐴P ∧ 1Q <Q (*Q𝑤)) → ∃𝑣𝐴 ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)
1513, 14sylan2b 492 . . . . 5 ((𝐴P𝑤 <Q 1Q) → ∃𝑣𝐴 ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)
16 prnmax 9817 . . . . . . 7 ((𝐴P𝑣𝐴) → ∃𝑧𝐴 𝑣 <Q 𝑧)
1716ad2ant2r 783 . . . . . 6 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → ∃𝑧𝐴 𝑣 <Q 𝑧)
18 elprnq 9813 . . . . . . . . . . . . 13 ((𝐴P𝑣𝐴) → 𝑣Q)
1918ad2ant2r 783 . . . . . . . . . . . 12 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → 𝑣Q)
20193adant3 1081 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑣Q)
21 simp1r 1086 . . . . . . . . . . . 12 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑤 <Q 1Q)
22 ltrelnq 9748 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
2322brel 5168 . . . . . . . . . . . . 13 (𝑤 <Q 1Q → (𝑤Q ∧ 1QQ))
2423simpld 475 . . . . . . . . . . . 12 (𝑤 <Q 1Q𝑤Q)
2521, 24syl 17 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑤Q)
26 simp3 1063 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑣 <Q 𝑧)
27 simp2r 1088 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)
28 ltrnq 9801 . . . . . . . . . . . . . . . . 17 (𝑣 <Q 𝑧 ↔ (*Q𝑧) <Q (*Q𝑣))
29 fvex 6201 . . . . . . . . . . . . . . . . . 18 (*Q𝑧) ∈ V
30 fvex 6201 . . . . . . . . . . . . . . . . . 18 (*Q𝑣) ∈ V
31 ltmnq 9794 . . . . . . . . . . . . . . . . . 18 (𝑢Q → (𝑥 <Q 𝑦 ↔ (𝑢 ·Q 𝑥) <Q (𝑢 ·Q 𝑦)))
32 vex 3203 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ V
33 mulcomnq 9775 . . . . . . . . . . . . . . . . . 18 (𝑥 ·Q 𝑦) = (𝑦 ·Q 𝑥)
3429, 30, 31, 32, 33caovord2 6846 . . . . . . . . . . . . . . . . 17 (𝑤Q → ((*Q𝑧) <Q (*Q𝑣) ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
3528, 34syl5bb 272 . . . . . . . . . . . . . . . 16 (𝑤Q → (𝑣 <Q 𝑧 ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
3635adantl 482 . . . . . . . . . . . . . . 15 ((𝑣Q𝑤Q) → (𝑣 <Q 𝑧 ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
3736biimpd 219 . . . . . . . . . . . . . 14 ((𝑣Q𝑤Q) → (𝑣 <Q 𝑧 → ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
38 mulcomnq 9775 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ·Q (*Q𝑣)) = ((*Q𝑣) ·Q 𝑣)
39 recidnq 9787 . . . . . . . . . . . . . . . . . . . . 21 (𝑣Q → (𝑣 ·Q (*Q𝑣)) = 1Q)
4038, 39syl5eqr 2670 . . . . . . . . . . . . . . . . . . . 20 (𝑣Q → ((*Q𝑣) ·Q 𝑣) = 1Q)
41 recidnq 9787 . . . . . . . . . . . . . . . . . . . 20 (𝑤Q → (𝑤 ·Q (*Q𝑤)) = 1Q)
4240, 41oveqan12d 6669 . . . . . . . . . . . . . . . . . . 19 ((𝑣Q𝑤Q) → (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
43 vex 3203 . . . . . . . . . . . . . . . . . . . 20 𝑣 ∈ V
44 mulassnq 9781 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ·Q 𝑦) ·Q 𝑢) = (𝑥 ·Q (𝑦 ·Q 𝑢))
45 fvex 6201 . . . . . . . . . . . . . . . . . . . 20 (*Q𝑤) ∈ V
4630, 43, 32, 33, 44, 45caov4 6865 . . . . . . . . . . . . . . . . . . 19 (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤)))
47 mulidnq 9785 . . . . . . . . . . . . . . . . . . . 20 (1QQ → (1Q ·Q 1Q) = 1Q)
485, 47ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (1Q ·Q 1Q) = 1Q
4942, 46, 483eqtr3g 2679 . . . . . . . . . . . . . . . . . 18 ((𝑣Q𝑤Q) → (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q)
50 recclnq 9788 . . . . . . . . . . . . . . . . . . . 20 (𝑣Q → (*Q𝑣) ∈ Q)
51 mulclnq 9769 . . . . . . . . . . . . . . . . . . . 20 (((*Q𝑣) ∈ Q𝑤Q) → ((*Q𝑣) ·Q 𝑤) ∈ Q)
5250, 51sylan 488 . . . . . . . . . . . . . . . . . . 19 ((𝑣Q𝑤Q) → ((*Q𝑣) ·Q 𝑤) ∈ Q)
53 recmulnq 9786 . . . . . . . . . . . . . . . . . . 19 (((*Q𝑣) ·Q 𝑤) ∈ Q → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
5452, 53syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑣Q𝑤Q) → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
5549, 54mpbird 247 . . . . . . . . . . . . . . . . 17 ((𝑣Q𝑤Q) → (*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)))
5655eleq1d 2686 . . . . . . . . . . . . . . . 16 ((𝑣Q𝑤Q) → ((*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴 ↔ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴))
5756notbid 308 . . . . . . . . . . . . . . 15 ((𝑣Q𝑤Q) → (¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴 ↔ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴))
5857biimprd 238 . . . . . . . . . . . . . 14 ((𝑣Q𝑤Q) → (¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴 → ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴))
5937, 58anim12d 586 . . . . . . . . . . . . 13 ((𝑣Q𝑤Q) → ((𝑣 <Q 𝑧 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) → (((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴)))
60 ovex 6678 . . . . . . . . . . . . . . 15 ((*Q𝑣) ·Q 𝑤) ∈ V
61 breq2 4657 . . . . . . . . . . . . . . . 16 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (((*Q𝑧) ·Q 𝑤) <Q 𝑦 ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
62 fveq2 6191 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (*Q𝑦) = (*Q‘((*Q𝑣) ·Q 𝑤)))
6362eleq1d 2686 . . . . . . . . . . . . . . . . 17 (𝑦 = ((*Q𝑣) ·Q 𝑤) → ((*Q𝑦) ∈ 𝐴 ↔ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴))
6463notbid 308 . . . . . . . . . . . . . . . 16 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (¬ (*Q𝑦) ∈ 𝐴 ↔ ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴))
6561, 64anbi12d 747 . . . . . . . . . . . . . . 15 (𝑦 = ((*Q𝑣) ·Q 𝑤) → ((((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ (((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴)))
6660, 65spcev 3300 . . . . . . . . . . . . . 14 ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴) → ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
67 ovex 6678 . . . . . . . . . . . . . . 15 ((*Q𝑧) ·Q 𝑤) ∈ V
68 breq1 4656 . . . . . . . . . . . . . . . . 17 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑥 <Q 𝑦 ↔ ((*Q𝑧) ·Q 𝑤) <Q 𝑦))
6968anbi1d 741 . . . . . . . . . . . . . . . 16 (𝑥 = ((*Q𝑧) ·Q 𝑤) → ((𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ (((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
7069exbidv 1850 . . . . . . . . . . . . . . 15 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴) ↔ ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)))
71 reclempr.1 . . . . . . . . . . . . . . 15 𝐵 = {𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴)}
7267, 70, 71elab2 3354 . . . . . . . . . . . . . 14 (((*Q𝑧) ·Q 𝑤) ∈ 𝐵 ↔ ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ ¬ (*Q𝑦) ∈ 𝐴))
7366, 72sylibr 224 . . . . . . . . . . . . 13 ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ ¬ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ 𝐴) → ((*Q𝑧) ·Q 𝑤) ∈ 𝐵)
7459, 73syl6 35 . . . . . . . . . . . 12 ((𝑣Q𝑤Q) → ((𝑣 <Q 𝑧 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) → ((*Q𝑧) ·Q 𝑤) ∈ 𝐵))
7574imp 445 . . . . . . . . . . 11 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ 𝐵)
7620, 25, 26, 27, 75syl22anc 1327 . . . . . . . . . 10 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → ((*Q𝑧) ·Q 𝑤) ∈ 𝐵)
7722brel 5168 . . . . . . . . . . . . 13 (𝑣 <Q 𝑧 → (𝑣Q𝑧Q))
7877simprd 479 . . . . . . . . . . . 12 (𝑣 <Q 𝑧𝑧Q)
79783ad2ant3 1084 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑧Q)
80 mulcomnq 9775 . . . . . . . . . . . . 13 (𝑤 ·Q 1Q) = (1Q ·Q 𝑤)
81 mulidnq 9785 . . . . . . . . . . . . 13 (𝑤Q → (𝑤 ·Q 1Q) = 𝑤)
8280, 81syl5reqr 2671 . . . . . . . . . . . 12 (𝑤Q𝑤 = (1Q ·Q 𝑤))
83 mulassnq 9781 . . . . . . . . . . . . 13 ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))
84 recidnq 9787 . . . . . . . . . . . . . 14 (𝑧Q → (𝑧 ·Q (*Q𝑧)) = 1Q)
8584oveq1d 6665 . . . . . . . . . . . . 13 (𝑧Q → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
8683, 85syl5reqr 2671 . . . . . . . . . . . 12 (𝑧Q → (1Q ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
8782, 86sylan9eqr 2678 . . . . . . . . . . 11 ((𝑧Q𝑤Q) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
8879, 25, 87syl2anc 693 . . . . . . . . . 10 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
89 oveq2 6658 . . . . . . . . . . . 12 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑧 ·Q 𝑥) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9089eqeq2d 2632 . . . . . . . . . . 11 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑤 = (𝑧 ·Q 𝑥) ↔ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))))
9190rspcev 3309 . . . . . . . . . 10 ((((*Q𝑧) ·Q 𝑤) ∈ 𝐵𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))) → ∃𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥))
9276, 88, 91syl2anc 693 . . . . . . . . 9 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴) ∧ 𝑣 <Q 𝑧) → ∃𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥))
93923expia 1267 . . . . . . . 8 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → (𝑣 <Q 𝑧 → ∃𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
9493reximdv 3016 . . . . . . 7 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → (∃𝑧𝐴 𝑣 <Q 𝑧 → ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
9571reclem2pr 9870 . . . . . . . . 9 (𝐴P𝐵P)
96 df-mp 9806 . . . . . . . . . 10 ·P = (𝑦P, 𝑤P ↦ {𝑢 ∣ ∃𝑓𝑦𝑔𝑤 𝑢 = (𝑓 ·Q 𝑔)})
97 mulclnq 9769 . . . . . . . . . 10 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
9896, 97genpelv 9822 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
9995, 98mpdan 702 . . . . . . . 8 (𝐴P → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
10099ad2antrr 762 . . . . . . 7 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → (𝑤 ∈ (𝐴 ·P 𝐵) ↔ ∃𝑧𝐴𝑥𝐵 𝑤 = (𝑧 ·Q 𝑥)))
10194, 100sylibrd 249 . . . . . 6 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → (∃𝑧𝐴 𝑣 <Q 𝑧𝑤 ∈ (𝐴 ·P 𝐵)))
10217, 101mpd 15 . . . . 5 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣𝐴 ∧ ¬ (𝑣 ·Q (*Q𝑤)) ∈ 𝐴)) → 𝑤 ∈ (𝐴 ·P 𝐵))
10315, 102rexlimddv 3035 . . . 4 ((𝐴P𝑤 <Q 1Q) → 𝑤 ∈ (𝐴 ·P 𝐵))
104103ex 450 . . 3 (𝐴P → (𝑤 <Q 1Q𝑤 ∈ (𝐴 ·P 𝐵)))
1052, 104syl5bi 232 . 2 (𝐴P → (𝑤 ∈ 1P𝑤 ∈ (𝐴 ·P 𝐵)))
106105ssrdv 3609 1 (𝐴P → 1P ⊆ (𝐴 ·P 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wrex 2913  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  Qcnq 9674  1Qc1q 9675   ·Q cmq 9678  *Qcrq 9679   <Q cltq 9680  Pcnp 9681  1Pc1p 9682   ·P cmp 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-1p 9804  df-mp 9806
This theorem is referenced by:  reclem4pr  9872
  Copyright terms: Public domain W3C validator