![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pinq | Structured version Visualization version GIF version |
Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pinq | ⊢ (𝐴 ∈ N → 〈𝐴, 1𝑜〉 ∈ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pi 9705 | . . . 4 ⊢ 1𝑜 ∈ N | |
2 | opelxpi 5148 | . . . 4 ⊢ ((𝐴 ∈ N ∧ 1𝑜 ∈ N) → 〈𝐴, 1𝑜〉 ∈ (N × N)) | |
3 | 1, 2 | mpan2 707 | . . 3 ⊢ (𝐴 ∈ N → 〈𝐴, 1𝑜〉 ∈ (N × N)) |
4 | nlt1pi 9728 | . . . . . 6 ⊢ ¬ (2nd ‘𝑦) <N 1𝑜 | |
5 | 1 | elexi 3213 | . . . . . . . 8 ⊢ 1𝑜 ∈ V |
6 | op2ndg 7181 | . . . . . . . 8 ⊢ ((𝐴 ∈ N ∧ 1𝑜 ∈ V) → (2nd ‘〈𝐴, 1𝑜〉) = 1𝑜) | |
7 | 5, 6 | mpan2 707 | . . . . . . 7 ⊢ (𝐴 ∈ N → (2nd ‘〈𝐴, 1𝑜〉) = 1𝑜) |
8 | 7 | breq2d 4665 | . . . . . 6 ⊢ (𝐴 ∈ N → ((2nd ‘𝑦) <N (2nd ‘〈𝐴, 1𝑜〉) ↔ (2nd ‘𝑦) <N 1𝑜)) |
9 | 4, 8 | mtbiri 317 | . . . . 5 ⊢ (𝐴 ∈ N → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1𝑜〉)) |
10 | 9 | a1d 25 | . . . 4 ⊢ (𝐴 ∈ N → (〈𝐴, 1𝑜〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1𝑜〉))) |
11 | 10 | ralrimivw 2967 | . . 3 ⊢ (𝐴 ∈ N → ∀𝑦 ∈ (N × N)(〈𝐴, 1𝑜〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1𝑜〉))) |
12 | breq1 4656 | . . . . . 6 ⊢ (𝑥 = 〈𝐴, 1𝑜〉 → (𝑥 ~Q 𝑦 ↔ 〈𝐴, 1𝑜〉 ~Q 𝑦)) | |
13 | fveq2 6191 | . . . . . . . 8 ⊢ (𝑥 = 〈𝐴, 1𝑜〉 → (2nd ‘𝑥) = (2nd ‘〈𝐴, 1𝑜〉)) | |
14 | 13 | breq2d 4665 | . . . . . . 7 ⊢ (𝑥 = 〈𝐴, 1𝑜〉 → ((2nd ‘𝑦) <N (2nd ‘𝑥) ↔ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1𝑜〉))) |
15 | 14 | notbid 308 | . . . . . 6 ⊢ (𝑥 = 〈𝐴, 1𝑜〉 → (¬ (2nd ‘𝑦) <N (2nd ‘𝑥) ↔ ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1𝑜〉))) |
16 | 12, 15 | imbi12d 334 | . . . . 5 ⊢ (𝑥 = 〈𝐴, 1𝑜〉 → ((𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥)) ↔ (〈𝐴, 1𝑜〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1𝑜〉)))) |
17 | 16 | ralbidv 2986 | . . . 4 ⊢ (𝑥 = 〈𝐴, 1𝑜〉 → (∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥)) ↔ ∀𝑦 ∈ (N × N)(〈𝐴, 1𝑜〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1𝑜〉)))) |
18 | 17 | elrab 3363 | . . 3 ⊢ (〈𝐴, 1𝑜〉 ∈ {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥))} ↔ (〈𝐴, 1𝑜〉 ∈ (N × N) ∧ ∀𝑦 ∈ (N × N)(〈𝐴, 1𝑜〉 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘〈𝐴, 1𝑜〉)))) |
19 | 3, 11, 18 | sylanbrc 698 | . 2 ⊢ (𝐴 ∈ N → 〈𝐴, 1𝑜〉 ∈ {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥))}) |
20 | df-nq 9734 | . 2 ⊢ Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥))} | |
21 | 19, 20 | syl6eleqr 2712 | 1 ⊢ (𝐴 ∈ N → 〈𝐴, 1𝑜〉 ∈ Q) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 Vcvv 3200 〈cop 4183 class class class wbr 4653 × cxp 5112 ‘cfv 5888 2nd c2nd 7167 1𝑜c1o 7553 Ncnpi 9666 <N clti 9669 ~Q ceq 9673 Qcnq 9674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fv 5896 df-om 7066 df-2nd 7169 df-1o 7560 df-ni 9694 df-lti 9697 df-nq 9734 |
This theorem is referenced by: 1nq 9750 archnq 9802 prlem934 9855 |
Copyright terms: Public domain | W3C validator |