MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1idpr Structured version   Visualization version   GIF version

Theorem 1idpr 9851
Description: 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of [Gleason] p. 124. (Contributed by NM, 2-Apr-1996.) (New usage is discouraged.)
Assertion
Ref Expression
1idpr (𝐴P → (𝐴 ·P 1P) = 𝐴)

Proof of Theorem 1idpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2918 . . . . 5 (∃𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔) ↔ ∃𝑔(𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔)))
2 19.42v 1918 . . . . . 6 (∃𝑔(𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
3 elprnq 9813 . . . . . . . . . 10 ((𝐴P𝑓𝐴) → 𝑓Q)
4 breq1 4656 . . . . . . . . . . 11 (𝑥 = (𝑓 ·Q 𝑔) → (𝑥 <Q 𝑓 ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
5 df-1p 9804 . . . . . . . . . . . . 13 1P = {𝑔𝑔 <Q 1Q}
65abeq2i 2735 . . . . . . . . . . . 12 (𝑔 ∈ 1P𝑔 <Q 1Q)
7 ltmnq 9794 . . . . . . . . . . . . 13 (𝑓Q → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q)))
8 mulidnq 9785 . . . . . . . . . . . . . 14 (𝑓Q → (𝑓 ·Q 1Q) = 𝑓)
98breq2d 4665 . . . . . . . . . . . . 13 (𝑓Q → ((𝑓 ·Q 𝑔) <Q (𝑓 ·Q 1Q) ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
107, 9bitrd 268 . . . . . . . . . . . 12 (𝑓Q → (𝑔 <Q 1Q ↔ (𝑓 ·Q 𝑔) <Q 𝑓))
116, 10syl5rbb 273 . . . . . . . . . . 11 (𝑓Q → ((𝑓 ·Q 𝑔) <Q 𝑓𝑔 ∈ 1P))
124, 11sylan9bbr 737 . . . . . . . . . 10 ((𝑓Q𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓𝑔 ∈ 1P))
133, 12sylan 488 . . . . . . . . 9 (((𝐴P𝑓𝐴) ∧ 𝑥 = (𝑓 ·Q 𝑔)) → (𝑥 <Q 𝑓𝑔 ∈ 1P))
1413ex 450 . . . . . . . 8 ((𝐴P𝑓𝐴) → (𝑥 = (𝑓 ·Q 𝑔) → (𝑥 <Q 𝑓𝑔 ∈ 1P)))
1514pm5.32rd 672 . . . . . . 7 ((𝐴P𝑓𝐴) → ((𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔))))
1615exbidv 1850 . . . . . 6 ((𝐴P𝑓𝐴) → (∃𝑔(𝑥 <Q 𝑓𝑥 = (𝑓 ·Q 𝑔)) ↔ ∃𝑔(𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔))))
172, 16syl5rbbr 275 . . . . 5 ((𝐴P𝑓𝐴) → (∃𝑔(𝑔 ∈ 1P𝑥 = (𝑓 ·Q 𝑔)) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
181, 17syl5bb 272 . . . 4 ((𝐴P𝑓𝐴) → (∃𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔) ↔ (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
1918rexbidva 3049 . . 3 (𝐴P → (∃𝑓𝐴𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔) ↔ ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
20 1pr 9837 . . . 4 1PP
21 df-mp 9806 . . . . 5 ·P = (𝑦P, 𝑧P ↦ {𝑤 ∣ ∃𝑢𝑦𝑣𝑧 𝑤 = (𝑢 ·Q 𝑣)})
22 mulclnq 9769 . . . . 5 ((𝑢Q𝑣Q) → (𝑢 ·Q 𝑣) ∈ Q)
2321, 22genpelv 9822 . . . 4 ((𝐴P ∧ 1PP) → (𝑥 ∈ (𝐴 ·P 1P) ↔ ∃𝑓𝐴𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔)))
2420, 23mpan2 707 . . 3 (𝐴P → (𝑥 ∈ (𝐴 ·P 1P) ↔ ∃𝑓𝐴𝑔 ∈ 1P 𝑥 = (𝑓 ·Q 𝑔)))
25 prnmax 9817 . . . . . 6 ((𝐴P𝑥𝐴) → ∃𝑓𝐴 𝑥 <Q 𝑓)
26 ltrelnq 9748 . . . . . . . . . . 11 <Q ⊆ (Q × Q)
2726brel 5168 . . . . . . . . . 10 (𝑥 <Q 𝑓 → (𝑥Q𝑓Q))
28 vex 3203 . . . . . . . . . . . . . 14 𝑓 ∈ V
29 vex 3203 . . . . . . . . . . . . . 14 𝑥 ∈ V
30 fvex 6201 . . . . . . . . . . . . . 14 (*Q𝑓) ∈ V
31 mulcomnq 9775 . . . . . . . . . . . . . 14 (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦)
32 mulassnq 9781 . . . . . . . . . . . . . 14 ((𝑦 ·Q 𝑧) ·Q 𝑤) = (𝑦 ·Q (𝑧 ·Q 𝑤))
3328, 29, 30, 31, 32caov12 6862 . . . . . . . . . . . . 13 (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) = (𝑥 ·Q (𝑓 ·Q (*Q𝑓)))
34 recidnq 9787 . . . . . . . . . . . . . 14 (𝑓Q → (𝑓 ·Q (*Q𝑓)) = 1Q)
3534oveq2d 6666 . . . . . . . . . . . . 13 (𝑓Q → (𝑥 ·Q (𝑓 ·Q (*Q𝑓))) = (𝑥 ·Q 1Q))
3633, 35syl5eq 2668 . . . . . . . . . . . 12 (𝑓Q → (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) = (𝑥 ·Q 1Q))
37 mulidnq 9785 . . . . . . . . . . . 12 (𝑥Q → (𝑥 ·Q 1Q) = 𝑥)
3836, 37sylan9eqr 2678 . . . . . . . . . . 11 ((𝑥Q𝑓Q) → (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) = 𝑥)
3938eqcomd 2628 . . . . . . . . . 10 ((𝑥Q𝑓Q) → 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
40 ovex 6678 . . . . . . . . . . 11 (𝑥 ·Q (*Q𝑓)) ∈ V
41 oveq2 6658 . . . . . . . . . . . 12 (𝑔 = (𝑥 ·Q (*Q𝑓)) → (𝑓 ·Q 𝑔) = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))))
4241eqeq2d 2632 . . . . . . . . . . 11 (𝑔 = (𝑥 ·Q (*Q𝑓)) → (𝑥 = (𝑓 ·Q 𝑔) ↔ 𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓)))))
4340, 42spcev 3300 . . . . . . . . . 10 (𝑥 = (𝑓 ·Q (𝑥 ·Q (*Q𝑓))) → ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))
4427, 39, 433syl 18 . . . . . . . . 9 (𝑥 <Q 𝑓 → ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))
4544a1i 11 . . . . . . . 8 (𝑓𝐴 → (𝑥 <Q 𝑓 → ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
4645ancld 576 . . . . . . 7 (𝑓𝐴 → (𝑥 <Q 𝑓 → (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
4746reximia 3009 . . . . . 6 (∃𝑓𝐴 𝑥 <Q 𝑓 → ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
4825, 47syl 17 . . . . 5 ((𝐴P𝑥𝐴) → ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)))
4948ex 450 . . . 4 (𝐴P → (𝑥𝐴 → ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
50 prcdnq 9815 . . . . . 6 ((𝐴P𝑓𝐴) → (𝑥 <Q 𝑓𝑥𝐴))
5150adantrd 484 . . . . 5 ((𝐴P𝑓𝐴) → ((𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)) → 𝑥𝐴))
5251rexlimdva 3031 . . . 4 (𝐴P → (∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔)) → 𝑥𝐴))
5349, 52impbid 202 . . 3 (𝐴P → (𝑥𝐴 ↔ ∃𝑓𝐴 (𝑥 <Q 𝑓 ∧ ∃𝑔 𝑥 = (𝑓 ·Q 𝑔))))
5419, 24, 533bitr4d 300 . 2 (𝐴P → (𝑥 ∈ (𝐴 ·P 1P) ↔ 𝑥𝐴))
5554eqrdv 2620 1 (𝐴P → (𝐴 ·P 1P) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wrex 2913   class class class wbr 4653  cfv 5888  (class class class)co 6650  Qcnq 9674  1Qc1q 9675   ·Q cmq 9678  *Qcrq 9679   <Q cltq 9680  Pcnp 9681  1Pc1p 9682   ·P cmp 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-1p 9804  df-mp 9806
This theorem is referenced by:  m1m1sr  9914  1idsr  9919
  Copyright terms: Public domain W3C validator