MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem4 Structured version   Visualization version   GIF version

Theorem ltexprlem4 9861
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem4 (𝐵P → (𝑥𝐶 → ∃𝑧(𝑧𝐶𝑥 <Q 𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑧
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 prnmax 9817 . . . . . . . . 9 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑤𝐵 (𝑦 +Q 𝑥) <Q 𝑤)
2 df-rex 2918 . . . . . . . . 9 (∃𝑤𝐵 (𝑦 +Q 𝑥) <Q 𝑤 ↔ ∃𝑤(𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤))
31, 2sylib 208 . . . . . . . 8 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑤(𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤))
4 ltrelnq 9748 . . . . . . . . . . . . . . . . . . . 20 <Q ⊆ (Q × Q)
54brel 5168 . . . . . . . . . . . . . . . . . . 19 ((𝑦 +Q 𝑥) <Q 𝑤 → ((𝑦 +Q 𝑥) ∈ Q𝑤Q))
65simpld 475 . . . . . . . . . . . . . . . . . 18 ((𝑦 +Q 𝑥) <Q 𝑤 → (𝑦 +Q 𝑥) ∈ Q)
7 addnqf 9770 . . . . . . . . . . . . . . . . . . . 20 +Q :(Q × Q)⟶Q
87fdmi 6052 . . . . . . . . . . . . . . . . . . 19 dom +Q = (Q × Q)
9 0nnq 9746 . . . . . . . . . . . . . . . . . . 19 ¬ ∅ ∈ Q
108, 9ndmovrcl 6820 . . . . . . . . . . . . . . . . . 18 ((𝑦 +Q 𝑥) ∈ Q → (𝑦Q𝑥Q))
116, 10syl 17 . . . . . . . . . . . . . . . . 17 ((𝑦 +Q 𝑥) <Q 𝑤 → (𝑦Q𝑥Q))
12 ltaddnq 9796 . . . . . . . . . . . . . . . . . 18 ((𝑦Q𝑥Q) → 𝑦 <Q (𝑦 +Q 𝑥))
13 ltsonq 9791 . . . . . . . . . . . . . . . . . . 19 <Q Or Q
1413, 4sotri 5523 . . . . . . . . . . . . . . . . . 18 ((𝑦 <Q (𝑦 +Q 𝑥) ∧ (𝑦 +Q 𝑥) <Q 𝑤) → 𝑦 <Q 𝑤)
1512, 14sylan 488 . . . . . . . . . . . . . . . . 17 (((𝑦Q𝑥Q) ∧ (𝑦 +Q 𝑥) <Q 𝑤) → 𝑦 <Q 𝑤)
1611, 15mpancom 703 . . . . . . . . . . . . . . . 16 ((𝑦 +Q 𝑥) <Q 𝑤𝑦 <Q 𝑤)
174brel 5168 . . . . . . . . . . . . . . . . . 18 (𝑦 <Q 𝑤 → (𝑦Q𝑤Q))
1817simprd 479 . . . . . . . . . . . . . . . . 17 (𝑦 <Q 𝑤𝑤Q)
19 ltexnq 9797 . . . . . . . . . . . . . . . . . 18 (𝑤Q → (𝑦 <Q 𝑤 ↔ ∃𝑧(𝑦 +Q 𝑧) = 𝑤))
2019biimpd 219 . . . . . . . . . . . . . . . . 17 (𝑤Q → (𝑦 <Q 𝑤 → ∃𝑧(𝑦 +Q 𝑧) = 𝑤))
2118, 20mpcom 38 . . . . . . . . . . . . . . . 16 (𝑦 <Q 𝑤 → ∃𝑧(𝑦 +Q 𝑧) = 𝑤)
2216, 21syl 17 . . . . . . . . . . . . . . 15 ((𝑦 +Q 𝑥) <Q 𝑤 → ∃𝑧(𝑦 +Q 𝑧) = 𝑤)
23 eqcom 2629 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑦 +Q 𝑧) ↔ (𝑦 +Q 𝑧) = 𝑤)
2423exbii 1774 . . . . . . . . . . . . . . 15 (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ↔ ∃𝑧(𝑦 +Q 𝑧) = 𝑤)
2522, 24sylibr 224 . . . . . . . . . . . . . 14 ((𝑦 +Q 𝑥) <Q 𝑤 → ∃𝑧 𝑤 = (𝑦 +Q 𝑧))
2625ancri 575 . . . . . . . . . . . . 13 ((𝑦 +Q 𝑥) <Q 𝑤 → (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑦 +Q 𝑥) <Q 𝑤))
2726anim2i 593 . . . . . . . . . . . 12 ((𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) → (𝑤𝐵 ∧ (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
28 an12 838 . . . . . . . . . . . 12 ((∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) ↔ (𝑤𝐵 ∧ (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
2927, 28sylibr 224 . . . . . . . . . . 11 ((𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) → (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
30 19.41v 1914 . . . . . . . . . . 11 (∃𝑧(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) ↔ (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
3129, 30sylibr 224 . . . . . . . . . 10 ((𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) → ∃𝑧(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
3231eximi 1762 . . . . . . . . 9 (∃𝑤(𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) → ∃𝑤𝑧(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
33 excom 2042 . . . . . . . . 9 (∃𝑧𝑤(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) ↔ ∃𝑤𝑧(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
3432, 33sylibr 224 . . . . . . . 8 (∃𝑤(𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) → ∃𝑧𝑤(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
35 ovex 6678 . . . . . . . . . . 11 (𝑦 +Q 𝑧) ∈ V
36 eleq1 2689 . . . . . . . . . . . 12 (𝑤 = (𝑦 +Q 𝑧) → (𝑤𝐵 ↔ (𝑦 +Q 𝑧) ∈ 𝐵))
37 breq2 4657 . . . . . . . . . . . 12 (𝑤 = (𝑦 +Q 𝑧) → ((𝑦 +Q 𝑥) <Q 𝑤 ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧)))
3836, 37anbi12d 747 . . . . . . . . . . 11 (𝑤 = (𝑦 +Q 𝑧) → ((𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) ↔ ((𝑦 +Q 𝑧) ∈ 𝐵 ∧ (𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧))))
3935, 38ceqsexv 3242 . . . . . . . . . 10 (∃𝑤(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) ↔ ((𝑦 +Q 𝑧) ∈ 𝐵 ∧ (𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧)))
40 ltanq 9793 . . . . . . . . . . . 12 (𝑦Q → (𝑥 <Q 𝑧 ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧)))
418, 4, 9, 40ndmovordi 6825 . . . . . . . . . . 11 ((𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧) → 𝑥 <Q 𝑧)
4241anim2i 593 . . . . . . . . . 10 (((𝑦 +Q 𝑧) ∈ 𝐵 ∧ (𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧)) → ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))
4339, 42sylbi 207 . . . . . . . . 9 (∃𝑤(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) → ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))
4443eximi 1762 . . . . . . . 8 (∃𝑧𝑤(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) → ∃𝑧((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))
453, 34, 443syl 18 . . . . . . 7 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑧((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))
4645anim2i 593 . . . . . 6 ((¬ 𝑦𝐴 ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴 ∧ ∃𝑧((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
4746an12s 843 . . . . 5 ((𝐵P ∧ (¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴 ∧ ∃𝑧((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
48 19.42v 1918 . . . . 5 (∃𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)) ↔ (¬ 𝑦𝐴 ∧ ∃𝑧((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
4947, 48sylibr 224 . . . 4 ((𝐵P ∧ (¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → ∃𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
5049ex 450 . . 3 (𝐵P → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))))
5150eximdv 1846 . 2 (𝐵P → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑦𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))))
52 ltexprlem.1 . . 3 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
5352abeq2i 2735 . 2 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
54 vex 3203 . . . . . . 7 𝑧 ∈ V
55 oveq2 6658 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑧))
5655eleq1d 2686 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑦 +Q 𝑥) ∈ 𝐵 ↔ (𝑦 +Q 𝑧) ∈ 𝐵))
5756anbi2d 740 . . . . . . . 8 (𝑥 = 𝑧 → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
5857exbidv 1850 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
5954, 58, 52elab2 3354 . . . . . 6 (𝑧𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))
6059anbi1i 731 . . . . 5 ((𝑧𝐶𝑥 <Q 𝑧) ↔ (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵) ∧ 𝑥 <Q 𝑧))
61 19.41v 1914 . . . . 5 (∃𝑦((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵) ∧ 𝑥 <Q 𝑧) ↔ (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵) ∧ 𝑥 <Q 𝑧))
62 anass 681 . . . . . 6 (((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵) ∧ 𝑥 <Q 𝑧) ↔ (¬ 𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
6362exbii 1774 . . . . 5 (∃𝑦((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵) ∧ 𝑥 <Q 𝑧) ↔ ∃𝑦𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
6460, 61, 633bitr2i 288 . . . 4 ((𝑧𝐶𝑥 <Q 𝑧) ↔ ∃𝑦𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
6564exbii 1774 . . 3 (∃𝑧(𝑧𝐶𝑥 <Q 𝑧) ↔ ∃𝑧𝑦𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
66 excom 2042 . . 3 (∃𝑦𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)) ↔ ∃𝑧𝑦𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
6765, 66bitr4i 267 . 2 (∃𝑧(𝑧𝐶𝑥 <Q 𝑧) ↔ ∃𝑦𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
6851, 53, 673imtr4g 285 1 (𝐵P → (𝑥𝐶 → ∃𝑧(𝑧𝐶𝑥 <Q 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wrex 2913   class class class wbr 4653   × cxp 5112  (class class class)co 6650  Qcnq 9674   +Q cplq 9677   <Q cltq 9680  Pcnp 9681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-ltnq 9740  df-np 9803
This theorem is referenced by:  ltexprlem5  9862
  Copyright terms: Public domain W3C validator