MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrnq Structured version   Visualization version   GIF version

Theorem ltrnq 9801
Description: Ordering property of reciprocal for positive fractions. Proposition 9-2.6(iv) of [Gleason] p. 120. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltrnq (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴))

Proof of Theorem ltrnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 9748 . . 3 <Q ⊆ (Q × Q)
21brel 5168 . 2 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
31brel 5168 . . 3 ((*Q𝐵) <Q (*Q𝐴) → ((*Q𝐵) ∈ Q ∧ (*Q𝐴) ∈ Q))
4 dmrecnq 9790 . . . . 5 dom *Q = Q
5 0nnq 9746 . . . . 5 ¬ ∅ ∈ Q
64, 5ndmfvrcl 6219 . . . 4 ((*Q𝐵) ∈ Q𝐵Q)
74, 5ndmfvrcl 6219 . . . 4 ((*Q𝐴) ∈ Q𝐴Q)
86, 7anim12ci 591 . . 3 (((*Q𝐵) ∈ Q ∧ (*Q𝐴) ∈ Q) → (𝐴Q𝐵Q))
93, 8syl 17 . 2 ((*Q𝐵) <Q (*Q𝐴) → (𝐴Q𝐵Q))
10 breq1 4656 . . . 4 (𝑥 = 𝐴 → (𝑥 <Q 𝑦𝐴 <Q 𝑦))
11 fveq2 6191 . . . . 5 (𝑥 = 𝐴 → (*Q𝑥) = (*Q𝐴))
1211breq2d 4665 . . . 4 (𝑥 = 𝐴 → ((*Q𝑦) <Q (*Q𝑥) ↔ (*Q𝑦) <Q (*Q𝐴)))
1310, 12bibi12d 335 . . 3 (𝑥 = 𝐴 → ((𝑥 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝑥)) ↔ (𝐴 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝐴))))
14 breq2 4657 . . . 4 (𝑦 = 𝐵 → (𝐴 <Q 𝑦𝐴 <Q 𝐵))
15 fveq2 6191 . . . . 5 (𝑦 = 𝐵 → (*Q𝑦) = (*Q𝐵))
1615breq1d 4663 . . . 4 (𝑦 = 𝐵 → ((*Q𝑦) <Q (*Q𝐴) ↔ (*Q𝐵) <Q (*Q𝐴)))
1714, 16bibi12d 335 . . 3 (𝑦 = 𝐵 → ((𝐴 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝐴)) ↔ (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴))))
18 recclnq 9788 . . . . . 6 (𝑥Q → (*Q𝑥) ∈ Q)
19 recclnq 9788 . . . . . 6 (𝑦Q → (*Q𝑦) ∈ Q)
20 mulclnq 9769 . . . . . 6 (((*Q𝑥) ∈ Q ∧ (*Q𝑦) ∈ Q) → ((*Q𝑥) ·Q (*Q𝑦)) ∈ Q)
2118, 19, 20syl2an 494 . . . . 5 ((𝑥Q𝑦Q) → ((*Q𝑥) ·Q (*Q𝑦)) ∈ Q)
22 ltmnq 9794 . . . . 5 (((*Q𝑥) ·Q (*Q𝑦)) ∈ Q → (𝑥 <Q 𝑦 ↔ (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) <Q (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦)))
2321, 22syl 17 . . . 4 ((𝑥Q𝑦Q) → (𝑥 <Q 𝑦 ↔ (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) <Q (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦)))
24 mulcomnq 9775 . . . . . . 7 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) = (𝑥 ·Q ((*Q𝑥) ·Q (*Q𝑦)))
25 mulassnq 9781 . . . . . . 7 ((𝑥 ·Q (*Q𝑥)) ·Q (*Q𝑦)) = (𝑥 ·Q ((*Q𝑥) ·Q (*Q𝑦)))
26 mulcomnq 9775 . . . . . . 7 ((𝑥 ·Q (*Q𝑥)) ·Q (*Q𝑦)) = ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥)))
2724, 25, 263eqtr2i 2650 . . . . . 6 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) = ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥)))
28 recidnq 9787 . . . . . . . 8 (𝑥Q → (𝑥 ·Q (*Q𝑥)) = 1Q)
2928oveq2d 6666 . . . . . . 7 (𝑥Q → ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥))) = ((*Q𝑦) ·Q 1Q))
30 mulidnq 9785 . . . . . . . 8 ((*Q𝑦) ∈ Q → ((*Q𝑦) ·Q 1Q) = (*Q𝑦))
3119, 30syl 17 . . . . . . 7 (𝑦Q → ((*Q𝑦) ·Q 1Q) = (*Q𝑦))
3229, 31sylan9eq 2676 . . . . . 6 ((𝑥Q𝑦Q) → ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥))) = (*Q𝑦))
3327, 32syl5eq 2668 . . . . 5 ((𝑥Q𝑦Q) → (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) = (*Q𝑦))
34 mulassnq 9781 . . . . . . 7 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) = ((*Q𝑥) ·Q ((*Q𝑦) ·Q 𝑦))
35 mulcomnq 9775 . . . . . . . 8 ((*Q𝑦) ·Q 𝑦) = (𝑦 ·Q (*Q𝑦))
3635oveq2i 6661 . . . . . . 7 ((*Q𝑥) ·Q ((*Q𝑦) ·Q 𝑦)) = ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦)))
3734, 36eqtri 2644 . . . . . 6 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) = ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦)))
38 recidnq 9787 . . . . . . . 8 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
3938oveq2d 6666 . . . . . . 7 (𝑦Q → ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦))) = ((*Q𝑥) ·Q 1Q))
40 mulidnq 9785 . . . . . . . 8 ((*Q𝑥) ∈ Q → ((*Q𝑥) ·Q 1Q) = (*Q𝑥))
4118, 40syl 17 . . . . . . 7 (𝑥Q → ((*Q𝑥) ·Q 1Q) = (*Q𝑥))
4239, 41sylan9eqr 2678 . . . . . 6 ((𝑥Q𝑦Q) → ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦))) = (*Q𝑥))
4337, 42syl5eq 2668 . . . . 5 ((𝑥Q𝑦Q) → (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) = (*Q𝑥))
4433, 43breq12d 4666 . . . 4 ((𝑥Q𝑦Q) → ((((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) <Q (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) ↔ (*Q𝑦) <Q (*Q𝑥)))
4523, 44bitrd 268 . . 3 ((𝑥Q𝑦Q) → (𝑥 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝑥)))
4613, 17, 45vtocl2ga 3274 . 2 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴)))
472, 9, 46pm5.21nii 368 1 (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  Qcnq 9674  1Qc1q 9675   ·Q cmq 9678  *Qcrq 9679   <Q cltq 9680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ni 9694  df-mi 9696  df-lti 9697  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740
This theorem is referenced by:  addclprlem1  9838  reclem2pr  9870  reclem3pr  9871
  Copyright terms: Public domain W3C validator