| Step | Hyp | Ref
| Expression |
| 1 | | mamures.i |
. . . 4
⊢ (𝜑 → 𝐼 ⊆ 𝑀) |
| 2 | | ssid 3624 |
. . . . 5
⊢ 𝑃 ⊆ 𝑃 |
| 3 | 2 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝑃 ⊆ 𝑃) |
| 4 | | resmpt2 6758 |
. . . 4
⊢ ((𝐼 ⊆ 𝑀 ∧ 𝑃 ⊆ 𝑃) → ((𝑖 ∈ 𝑀, 𝑗 ∈ 𝑃 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)) = (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑃 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑗)))))) |
| 5 | 1, 3, 4 | syl2anc 693 |
. . 3
⊢ (𝜑 → ((𝑖 ∈ 𝑀, 𝑗 ∈ 𝑃 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)) = (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑃 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑗)))))) |
| 6 | | ovres 6800 |
. . . . . . . . 9
⊢ ((𝑖 ∈ 𝐼 ∧ 𝑘 ∈ 𝑁) → (𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘) = (𝑖𝑋𝑘)) |
| 7 | 6 | 3ad2antl2 1224 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝑃) ∧ 𝑘 ∈ 𝑁) → (𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘) = (𝑖𝑋𝑘)) |
| 8 | 7 | eqcomd 2628 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝑃) ∧ 𝑘 ∈ 𝑁) → (𝑖𝑋𝑘) = (𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)) |
| 9 | 8 | oveq1d 6665 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝑃) ∧ 𝑘 ∈ 𝑁) → ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑗)) = ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r‘𝑅)(𝑘𝑌𝑗))) |
| 10 | 9 | mpteq2dva 4744 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝑃) → (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑗))) = (𝑘 ∈ 𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r‘𝑅)(𝑘𝑌𝑗)))) |
| 11 | 10 | oveq2d 6666 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑗 ∈ 𝑃) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑗)))) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r‘𝑅)(𝑘𝑌𝑗))))) |
| 12 | 11 | mpt2eq3dva 6719 |
. . 3
⊢ (𝜑 → (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑃 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑗))))) = (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑃 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r‘𝑅)(𝑘𝑌𝑗)))))) |
| 13 | 5, 12 | eqtrd 2656 |
. 2
⊢ (𝜑 → ((𝑖 ∈ 𝑀, 𝑗 ∈ 𝑃 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃)) = (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑃 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r‘𝑅)(𝑘𝑌𝑗)))))) |
| 14 | | mamures.f |
. . . 4
⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) |
| 15 | | mamures.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
| 16 | | eqid 2622 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 17 | | mamures.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| 18 | | mamures.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ Fin) |
| 19 | | mamures.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 20 | | mamures.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈ Fin) |
| 21 | | mamures.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁))) |
| 22 | | mamures.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑𝑚 (𝑁 × 𝑃))) |
| 23 | 14, 15, 16, 17, 18, 19, 20, 21, 22 | mamuval 20192 |
. . 3
⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑗 ∈ 𝑃 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑗)))))) |
| 24 | 23 | reseq1d 5395 |
. 2
⊢ (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑖 ∈ 𝑀, 𝑗 ∈ 𝑃 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑌𝑗))))) ↾ (𝐼 × 𝑃))) |
| 25 | | mamures.g |
. . 3
⊢ 𝐺 = (𝑅 maMul 〈𝐼, 𝑁, 𝑃〉) |
| 26 | | ssfi 8180 |
. . . 4
⊢ ((𝑀 ∈ Fin ∧ 𝐼 ⊆ 𝑀) → 𝐼 ∈ Fin) |
| 27 | 18, 1, 26 | syl2anc 693 |
. . 3
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 28 | | elmapi 7879 |
. . . . . 6
⊢ (𝑋 ∈ (𝐵 ↑𝑚 (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
| 29 | 21, 28 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
| 30 | | xpss1 5228 |
. . . . . 6
⊢ (𝐼 ⊆ 𝑀 → (𝐼 × 𝑁) ⊆ (𝑀 × 𝑁)) |
| 31 | 1, 30 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐼 × 𝑁) ⊆ (𝑀 × 𝑁)) |
| 32 | 29, 31 | fssresd 6071 |
. . . 4
⊢ (𝜑 → (𝑋 ↾ (𝐼 × 𝑁)):(𝐼 × 𝑁)⟶𝐵) |
| 33 | | fvex 6201 |
. . . . . . 7
⊢
(Base‘𝑅)
∈ V |
| 34 | 15, 33 | eqeltri 2697 |
. . . . . 6
⊢ 𝐵 ∈ V |
| 35 | 34 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ V) |
| 36 | | xpfi 8231 |
. . . . . 6
⊢ ((𝐼 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝐼 × 𝑁) ∈ Fin) |
| 37 | 27, 19, 36 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (𝐼 × 𝑁) ∈ Fin) |
| 38 | 35, 37 | elmapd 7871 |
. . . 4
⊢ (𝜑 → ((𝑋 ↾ (𝐼 × 𝑁)) ∈ (𝐵 ↑𝑚 (𝐼 × 𝑁)) ↔ (𝑋 ↾ (𝐼 × 𝑁)):(𝐼 × 𝑁)⟶𝐵)) |
| 39 | 32, 38 | mpbird 247 |
. . 3
⊢ (𝜑 → (𝑋 ↾ (𝐼 × 𝑁)) ∈ (𝐵 ↑𝑚 (𝐼 × 𝑁))) |
| 40 | 25, 15, 16, 17, 27, 19, 20, 39, 22 | mamuval 20192 |
. 2
⊢ (𝜑 → ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌) = (𝑖 ∈ 𝐼, 𝑗 ∈ 𝑃 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖(𝑋 ↾ (𝐼 × 𝑁))𝑘)(.r‘𝑅)(𝑘𝑌𝑗)))))) |
| 41 | 13, 24, 40 | 3eqtr4d 2666 |
1
⊢ (𝜑 → ((𝑋𝐹𝑌) ↾ (𝐼 × 𝑃)) = ((𝑋 ↾ (𝐼 × 𝑁))𝐺𝑌)) |