MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamures Structured version   Visualization version   Unicode version

Theorem mamures 20196
Description: Rows in a matrix product are functions only of the corresponding rows in the left argument. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
mamures.f  |-  F  =  ( R maMul  <. M ,  N ,  P >. )
mamures.g  |-  G  =  ( R maMul  <. I ,  N ,  P >. )
mamures.b  |-  B  =  ( Base `  R
)
mamures.r  |-  ( ph  ->  R  e.  V )
mamures.m  |-  ( ph  ->  M  e.  Fin )
mamures.n  |-  ( ph  ->  N  e.  Fin )
mamures.p  |-  ( ph  ->  P  e.  Fin )
mamures.i  |-  ( ph  ->  I  C_  M )
mamures.x  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
mamures.y  |-  ( ph  ->  Y  e.  ( B  ^m  ( N  X.  P ) ) )
Assertion
Ref Expression
mamures  |-  ( ph  ->  ( ( X F Y )  |`  (
I  X.  P ) )  =  ( ( X  |`  ( I  X.  N ) ) G Y ) )

Proof of Theorem mamures
Dummy variables  i 
j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamures.i . . . 4  |-  ( ph  ->  I  C_  M )
2 ssid 3624 . . . . 5  |-  P  C_  P
32a1i 11 . . . 4  |-  ( ph  ->  P  C_  P )
4 resmpt2 6758 . . . 4  |-  ( ( I  C_  M  /\  P  C_  P )  -> 
( ( i  e.  M ,  j  e.  P  |->  ( R  gsumg  ( k  e.  N  |->  ( ( i X k ) ( .r `  R
) ( k Y j ) ) ) ) )  |`  (
I  X.  P ) )  =  ( i  e.  I ,  j  e.  P  |->  ( R 
gsumg  ( k  e.  N  |->  ( ( i X k ) ( .r
`  R ) ( k Y j ) ) ) ) ) )
51, 3, 4syl2anc 693 . . 3  |-  ( ph  ->  ( ( i  e.  M ,  j  e.  P  |->  ( R  gsumg  ( k  e.  N  |->  ( ( i X k ) ( .r `  R
) ( k Y j ) ) ) ) )  |`  (
I  X.  P ) )  =  ( i  e.  I ,  j  e.  P  |->  ( R 
gsumg  ( k  e.  N  |->  ( ( i X k ) ( .r
`  R ) ( k Y j ) ) ) ) ) )
6 ovres 6800 . . . . . . . . 9  |-  ( ( i  e.  I  /\  k  e.  N )  ->  ( i ( X  |`  ( I  X.  N
) ) k )  =  ( i X k ) )
763ad2antl2 1224 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  I  /\  j  e.  P )  /\  k  e.  N )  ->  (
i ( X  |`  ( I  X.  N
) ) k )  =  ( i X k ) )
87eqcomd 2628 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  I  /\  j  e.  P )  /\  k  e.  N )  ->  (
i X k )  =  ( i ( X  |`  ( I  X.  N ) ) k ) )
98oveq1d 6665 . . . . . 6  |-  ( ( ( ph  /\  i  e.  I  /\  j  e.  P )  /\  k  e.  N )  ->  (
( i X k ) ( .r `  R ) ( k Y j ) )  =  ( ( i ( X  |`  (
I  X.  N ) ) k ) ( .r `  R ) ( k Y j ) ) )
109mpteq2dva 4744 . . . . 5  |-  ( (
ph  /\  i  e.  I  /\  j  e.  P
)  ->  ( k  e.  N  |->  ( ( i X k ) ( .r `  R
) ( k Y j ) ) )  =  ( k  e.  N  |->  ( ( i ( X  |`  (
I  X.  N ) ) k ) ( .r `  R ) ( k Y j ) ) ) )
1110oveq2d 6666 . . . 4  |-  ( (
ph  /\  i  e.  I  /\  j  e.  P
)  ->  ( R  gsumg  ( k  e.  N  |->  ( ( i X k ) ( .r `  R ) ( k Y j ) ) ) )  =  ( R  gsumg  ( k  e.  N  |->  ( ( i ( X  |`  ( I  X.  N ) ) k ) ( .r `  R ) ( k Y j ) ) ) ) )
1211mpt2eq3dva 6719 . . 3  |-  ( ph  ->  ( i  e.  I ,  j  e.  P  |->  ( R  gsumg  ( k  e.  N  |->  ( ( i X k ) ( .r
`  R ) ( k Y j ) ) ) ) )  =  ( i  e.  I ,  j  e.  P  |->  ( R  gsumg  ( k  e.  N  |->  ( ( i ( X  |`  ( I  X.  N
) ) k ) ( .r `  R
) ( k Y j ) ) ) ) ) )
135, 12eqtrd 2656 . 2  |-  ( ph  ->  ( ( i  e.  M ,  j  e.  P  |->  ( R  gsumg  ( k  e.  N  |->  ( ( i X k ) ( .r `  R
) ( k Y j ) ) ) ) )  |`  (
I  X.  P ) )  =  ( i  e.  I ,  j  e.  P  |->  ( R 
gsumg  ( k  e.  N  |->  ( ( i ( X  |`  ( I  X.  N ) ) k ) ( .r `  R ) ( k Y j ) ) ) ) ) )
14 mamures.f . . . 4  |-  F  =  ( R maMul  <. M ,  N ,  P >. )
15 mamures.b . . . 4  |-  B  =  ( Base `  R
)
16 eqid 2622 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
17 mamures.r . . . 4  |-  ( ph  ->  R  e.  V )
18 mamures.m . . . 4  |-  ( ph  ->  M  e.  Fin )
19 mamures.n . . . 4  |-  ( ph  ->  N  e.  Fin )
20 mamures.p . . . 4  |-  ( ph  ->  P  e.  Fin )
21 mamures.x . . . 4  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
22 mamures.y . . . 4  |-  ( ph  ->  Y  e.  ( B  ^m  ( N  X.  P ) ) )
2314, 15, 16, 17, 18, 19, 20, 21, 22mamuval 20192 . . 3  |-  ( ph  ->  ( X F Y )  =  ( i  e.  M ,  j  e.  P  |->  ( R 
gsumg  ( k  e.  N  |->  ( ( i X k ) ( .r
`  R ) ( k Y j ) ) ) ) ) )
2423reseq1d 5395 . 2  |-  ( ph  ->  ( ( X F Y )  |`  (
I  X.  P ) )  =  ( ( i  e.  M , 
j  e.  P  |->  ( R  gsumg  ( k  e.  N  |->  ( ( i X k ) ( .r
`  R ) ( k Y j ) ) ) ) )  |`  ( I  X.  P
) ) )
25 mamures.g . . 3  |-  G  =  ( R maMul  <. I ,  N ,  P >. )
26 ssfi 8180 . . . 4  |-  ( ( M  e.  Fin  /\  I  C_  M )  ->  I  e.  Fin )
2718, 1, 26syl2anc 693 . . 3  |-  ( ph  ->  I  e.  Fin )
28 elmapi 7879 . . . . . 6  |-  ( X  e.  ( B  ^m  ( M  X.  N
) )  ->  X : ( M  X.  N ) --> B )
2921, 28syl 17 . . . . 5  |-  ( ph  ->  X : ( M  X.  N ) --> B )
30 xpss1 5228 . . . . . 6  |-  ( I 
C_  M  ->  (
I  X.  N ) 
C_  ( M  X.  N ) )
311, 30syl 17 . . . . 5  |-  ( ph  ->  ( I  X.  N
)  C_  ( M  X.  N ) )
3229, 31fssresd 6071 . . . 4  |-  ( ph  ->  ( X  |`  (
I  X.  N ) ) : ( I  X.  N ) --> B )
33 fvex 6201 . . . . . . 7  |-  ( Base `  R )  e.  _V
3415, 33eqeltri 2697 . . . . . 6  |-  B  e. 
_V
3534a1i 11 . . . . 5  |-  ( ph  ->  B  e.  _V )
36 xpfi 8231 . . . . . 6  |-  ( ( I  e.  Fin  /\  N  e.  Fin )  ->  ( I  X.  N
)  e.  Fin )
3727, 19, 36syl2anc 693 . . . . 5  |-  ( ph  ->  ( I  X.  N
)  e.  Fin )
3835, 37elmapd 7871 . . . 4  |-  ( ph  ->  ( ( X  |`  ( I  X.  N
) )  e.  ( B  ^m  ( I  X.  N ) )  <-> 
( X  |`  (
I  X.  N ) ) : ( I  X.  N ) --> B ) )
3932, 38mpbird 247 . . 3  |-  ( ph  ->  ( X  |`  (
I  X.  N ) )  e.  ( B  ^m  ( I  X.  N ) ) )
4025, 15, 16, 17, 27, 19, 20, 39, 22mamuval 20192 . 2  |-  ( ph  ->  ( ( X  |`  ( I  X.  N
) ) G Y )  =  ( i  e.  I ,  j  e.  P  |->  ( R 
gsumg  ( k  e.  N  |->  ( ( i ( X  |`  ( I  X.  N ) ) k ) ( .r `  R ) ( k Y j ) ) ) ) ) )
4113, 24, 403eqtr4d 2666 1  |-  ( ph  ->  ( ( X F Y )  |`  (
I  X.  P ) )  =  ( ( X  |`  ( I  X.  N ) ) G Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   <.cotp 4185    |-> cmpt 4729    X. cxp 5112    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857   Fincfn 7955   Basecbs 15857   .rcmulr 15942    gsumg cgsu 16101   maMul cmmul 20189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-mamu 20190
This theorem is referenced by:  mdetmul  20429
  Copyright terms: Public domain W3C validator