| Step | Hyp | Ref
| Expression |
| 1 | | choicefi.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 2 | | mptfi 8265 |
. . . . 5
⊢ (𝐴 ∈ Fin → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
| 4 | | rnfi 8249 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
| 5 | 3, 4 | syl 17 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin) |
| 6 | | fnchoice 39188 |
. . 3
⊢ (ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ∈ Fin → ∃𝑔(𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦))) |
| 7 | 5, 6 | syl 17 |
. 2
⊢ (𝜑 → ∃𝑔(𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦))) |
| 8 | | simpl 473 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦))) → 𝜑) |
| 9 | | simprl 794 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦))) → 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 10 | | nfv 1843 |
. . . . . . . 8
⊢
Ⅎ𝑦𝜑 |
| 11 | | nfra1 2941 |
. . . . . . . 8
⊢
Ⅎ𝑦∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) |
| 12 | 10, 11 | nfan 1828 |
. . . . . . 7
⊢
Ⅎ𝑦(𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) |
| 13 | | rspa 2930 |
. . . . . . . . . . . 12
⊢
((∀𝑦 ∈
ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) |
| 14 | 13 | adantll 750 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) |
| 15 | | vex 3203 |
. . . . . . . . . . . . . . . 16
⊢ 𝑦 ∈ V |
| 16 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 17 | 16 | elrnmpt 5372 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵)) |
| 18 | 15, 17 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
| 19 | 18 | biimpi 206 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
| 20 | 19 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
| 21 | | simp3 1063 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
| 22 | | choicefi.n |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ ∅) |
| 23 | 22 | 3adant3 1081 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝐵 ≠ ∅) |
| 24 | 21, 23 | eqnetrd 2861 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) → 𝑦 ≠ ∅) |
| 25 | 24 | 3exp 1264 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 = 𝐵 → 𝑦 ≠ ∅))) |
| 26 | 25 | rexlimdv 3030 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 → 𝑦 ≠ ∅)) |
| 27 | 26 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 → 𝑦 ≠ ∅)) |
| 28 | 20, 27 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑦 ≠ ∅) |
| 29 | 28 | adantlr 751 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑦 ≠ ∅) |
| 30 | | id 22 |
. . . . . . . . . . . 12
⊢ ((𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) → (𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) |
| 31 | 30 | imp 445 |
. . . . . . . . . . 11
⊢ (((𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦) ∧ 𝑦 ≠ ∅) → (𝑔‘𝑦) ∈ 𝑦) |
| 32 | 14, 29, 31 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) ∧ 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑔‘𝑦) ∈ 𝑦) |
| 33 | 32 | ex 450 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑔‘𝑦) ∈ 𝑦)) |
| 34 | 12, 33 | ralrimi 2957 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) |
| 35 | | rsp 2929 |
. . . . . . . 8
⊢
(∀𝑦 ∈
ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦 → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑔‘𝑦) ∈ 𝑦)) |
| 36 | 34, 35 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) → (𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → (𝑔‘𝑦) ∈ 𝑦)) |
| 37 | 12, 36 | ralrimi 2957 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) → ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) |
| 38 | 37 | adantrl 752 |
. . . . 5
⊢ ((𝜑 ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦))) → ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) |
| 39 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑔 ∈ V |
| 40 | 39 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑔 ∈ V) |
| 41 | 1 | mptexd 6487 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
| 42 | | coexg 7117 |
. . . . . . . 8
⊢ ((𝑔 ∈ V ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) → (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ V) |
| 43 | 40, 41, 42 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ V) |
| 44 | 43 | 3ad2ant1 1082 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) → (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ V) |
| 45 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 46 | | choicefi.b |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
| 47 | 46 | ralrimiva 2966 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑊) |
| 48 | 16 | fnmpt 6020 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ 𝑊 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
| 49 | 47, 48 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
| 50 | 49 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
| 51 | | ssid 3624 |
. . . . . . . . . 10
⊢ ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 52 | 51 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 53 | | fnco 5999 |
. . . . . . . . 9
⊢ ((𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) Fn 𝐴) |
| 54 | 45, 50, 52, 53 | syl3anc 1326 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) Fn 𝐴) |
| 55 | 54 | 3adant3 1081 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) → (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) Fn 𝐴) |
| 56 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝜑 |
| 57 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑔 |
| 58 | | nfmpt1 4747 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
| 59 | 58 | nfrn 5368 |
. . . . . . . . . 10
⊢
Ⅎ𝑥ran
(𝑥 ∈ 𝐴 ↦ 𝐵) |
| 60 | 57, 59 | nffn 5987 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 61 | | nfv 1843 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑔‘𝑦) ∈ 𝑦 |
| 62 | 59, 61 | nfral 2945 |
. . . . . . . . 9
⊢
Ⅎ𝑥∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦 |
| 63 | 56, 60, 62 | nf3an 1831 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) |
| 64 | | funmpt 5926 |
. . . . . . . . . . . . . 14
⊢ Fun
(𝑥 ∈ 𝐴 ↦ 𝐵) |
| 65 | 64 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → Fun (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 66 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 67 | 16, 46 | dmmptd 6024 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 68 | 67 | eqcomd 2628 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 69 | 68 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 70 | 66, 69 | eleqtrd 2703 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 71 | | fvco 6274 |
. . . . . . . . . . . . 13
⊢ ((Fun
(𝑥 ∈ 𝐴 ↦ 𝐵) ∧ 𝑥 ∈ dom (𝑥 ∈ 𝐴 ↦ 𝐵)) → ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) = (𝑔‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) |
| 72 | 65, 70, 71 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) = (𝑔‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) |
| 73 | 16 | fvmpt2 6291 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑊) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 74 | 66, 46, 73 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
| 75 | 74 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑔‘((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) = (𝑔‘𝐵)) |
| 76 | 72, 75 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) = (𝑔‘𝐵)) |
| 77 | 76 | 3ad2antl1 1223 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) ∧ 𝑥 ∈ 𝐴) → ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) = (𝑔‘𝐵)) |
| 78 | 16 | elrnmpt1 5374 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 79 | 66, 46, 78 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 80 | 79 | 3ad2antl1 1223 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 81 | | simpl3 1066 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) ∧ 𝑥 ∈ 𝐴) → ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) |
| 82 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → (𝑔‘𝑦) = (𝑔‘𝐵)) |
| 83 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) |
| 84 | 82, 83 | eleq12d 2695 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → ((𝑔‘𝑦) ∈ 𝑦 ↔ (𝑔‘𝐵) ∈ 𝐵)) |
| 85 | 84 | rspcva 3307 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) → (𝑔‘𝐵) ∈ 𝐵) |
| 86 | 80, 81, 85 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) ∧ 𝑥 ∈ 𝐴) → (𝑔‘𝐵) ∈ 𝐵) |
| 87 | 77, 86 | eqeltrd 2701 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) ∧ 𝑥 ∈ 𝐴) → ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵) |
| 88 | 87 | ex 450 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) → (𝑥 ∈ 𝐴 → ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵)) |
| 89 | 63, 88 | ralrimi 2957 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) → ∀𝑥 ∈ 𝐴 ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵) |
| 90 | 55, 89 | jca 554 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) → ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵)) |
| 91 | | fneq1 5979 |
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑓 Fn 𝐴 ↔ (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) Fn 𝐴)) |
| 92 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑓 |
| 93 | 57, 58 | nfco 5287 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 94 | 92, 93 | nfeq 2776 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑓 = (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 95 | | fveq1 6190 |
. . . . . . . . . 10
⊢ (𝑓 = (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) → (𝑓‘𝑥) = ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥)) |
| 96 | 95 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) → ((𝑓‘𝑥) ∈ 𝐵 ↔ ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵)) |
| 97 | 94, 96 | ralbid 2983 |
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵)) |
| 98 | 91, 97 | anbi12d 747 |
. . . . . . 7
⊢ (𝑓 = (𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) → ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ↔ ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵))) |
| 99 | 98 | spcegv 3294 |
. . . . . 6
⊢ ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ V → (((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵)) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ (𝑥 ∈ 𝐴 ↦ 𝐵))‘𝑥) ∈ 𝐵) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵))) |
| 100 | 44, 90, 99 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ 𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑔‘𝑦) ∈ 𝑦) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
| 101 | 8, 9, 38, 100 | syl3anc 1326 |
. . . 4
⊢ ((𝜑 ∧ (𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦))) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
| 102 | 101 | ex 450 |
. . 3
⊢ (𝜑 → ((𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵))) |
| 103 | 102 | exlimdv 1861 |
. 2
⊢ (𝜑 → (∃𝑔(𝑔 Fn ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)(𝑦 ≠ ∅ → (𝑔‘𝑦) ∈ 𝑦)) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵))) |
| 104 | 7, 103 | mpd 15 |
1
⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |