MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustto Structured version   Visualization version   Unicode version

Theorem metustto 22358
Description: Any two elements of the filter base generated by the metric 
D can be compared, like for RR+ (i.e. it's totally ordered). (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
Assertion
Ref Expression
metustto  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F  /\  B  e.  F )  ->  ( A  C_  B  \/  B  C_  A ) )
Distinct variable groups:    B, a    D, a    X, a    A, a    F, a

Proof of Theorem metustto
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 simpll 790 . . . . 5  |-  ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D " ( 0 [,) a ) )  /\  B  =  ( `' D " ( 0 [,) b ) ) ) )  ->  a  e.  RR+ )
21rpred 11872 . . . 4  |-  ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D " ( 0 [,) a ) )  /\  B  =  ( `' D " ( 0 [,) b ) ) ) )  ->  a  e.  RR )
3 simplr 792 . . . . 5  |-  ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D " ( 0 [,) a ) )  /\  B  =  ( `' D " ( 0 [,) b ) ) ) )  ->  b  e.  RR+ )
43rpred 11872 . . . 4  |-  ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D " ( 0 [,) a ) )  /\  B  =  ( `' D " ( 0 [,) b ) ) ) )  ->  b  e.  RR )
5 simpllr 799 . . . . . . . 8  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  a  <_  b
)  ->  b  e.  RR+ )
65rpred 11872 . . . . . . 7  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  a  <_  b
)  ->  b  e.  RR )
7 0xr 10086 . . . . . . . . . 10  |-  0  e.  RR*
87a1i 11 . . . . . . . . 9  |-  ( ( b  e.  RR  /\  a  <_  b )  -> 
0  e.  RR* )
9 simpl 473 . . . . . . . . . 10  |-  ( ( b  e.  RR  /\  a  <_  b )  -> 
b  e.  RR )
109rexrd 10089 . . . . . . . . 9  |-  ( ( b  e.  RR  /\  a  <_  b )  -> 
b  e.  RR* )
11 0le0 11110 . . . . . . . . . 10  |-  0  <_  0
1211a1i 11 . . . . . . . . 9  |-  ( ( b  e.  RR  /\  a  <_  b )  -> 
0  <_  0 )
13 simpr 477 . . . . . . . . 9  |-  ( ( b  e.  RR  /\  a  <_  b )  -> 
a  <_  b )
14 icossico 12243 . . . . . . . . 9  |-  ( ( ( 0  e.  RR*  /\  b  e.  RR* )  /\  ( 0  <_  0  /\  a  <_  b ) )  ->  ( 0 [,) a )  C_  ( 0 [,) b
) )
158, 10, 12, 13, 14syl22anc 1327 . . . . . . . 8  |-  ( ( b  e.  RR  /\  a  <_  b )  -> 
( 0 [,) a
)  C_  ( 0 [,) b ) )
16 imass2 5501 . . . . . . . 8  |-  ( ( 0 [,) a ) 
C_  ( 0 [,) b )  ->  ( `' D " ( 0 [,) a ) ) 
C_  ( `' D " ( 0 [,) b
) ) )
1715, 16syl 17 . . . . . . 7  |-  ( ( b  e.  RR  /\  a  <_  b )  -> 
( `' D "
( 0 [,) a
) )  C_  ( `' D " ( 0 [,) b ) ) )
186, 17sylancom 701 . . . . . 6  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  a  <_  b
)  ->  ( `' D " ( 0 [,) a ) )  C_  ( `' D " ( 0 [,) b ) ) )
19 simplrl 800 . . . . . 6  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  a  <_  b
)  ->  A  =  ( `' D " ( 0 [,) a ) ) )
20 simplrr 801 . . . . . 6  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  a  <_  b
)  ->  B  =  ( `' D " ( 0 [,) b ) ) )
2118, 19, 203sstr4d 3648 . . . . 5  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  a  <_  b
)  ->  A  C_  B
)
2221orcd 407 . . . 4  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  a  <_  b
)  ->  ( A  C_  B  \/  B  C_  A ) )
23 simplll 798 . . . . . . . 8  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  b  <_  a
)  ->  a  e.  RR+ )
2423rpred 11872 . . . . . . 7  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  b  <_  a
)  ->  a  e.  RR )
257a1i 11 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  <_  a )  -> 
0  e.  RR* )
26 simpl 473 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  b  <_  a )  -> 
a  e.  RR )
2726rexrd 10089 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  <_  a )  -> 
a  e.  RR* )
2811a1i 11 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  <_  a )  -> 
0  <_  0 )
29 simpr 477 . . . . . . . . 9  |-  ( ( a  e.  RR  /\  b  <_  a )  -> 
b  <_  a )
30 icossico 12243 . . . . . . . . 9  |-  ( ( ( 0  e.  RR*  /\  a  e.  RR* )  /\  ( 0  <_  0  /\  b  <_  a ) )  ->  ( 0 [,) b )  C_  ( 0 [,) a
) )
3125, 27, 28, 29, 30syl22anc 1327 . . . . . . . 8  |-  ( ( a  e.  RR  /\  b  <_  a )  -> 
( 0 [,) b
)  C_  ( 0 [,) a ) )
32 imass2 5501 . . . . . . . 8  |-  ( ( 0 [,) b ) 
C_  ( 0 [,) a )  ->  ( `' D " ( 0 [,) b ) ) 
C_  ( `' D " ( 0 [,) a
) ) )
3331, 32syl 17 . . . . . . 7  |-  ( ( a  e.  RR  /\  b  <_  a )  -> 
( `' D "
( 0 [,) b
) )  C_  ( `' D " ( 0 [,) a ) ) )
3424, 33sylancom 701 . . . . . 6  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  b  <_  a
)  ->  ( `' D " ( 0 [,) b ) )  C_  ( `' D " ( 0 [,) a ) ) )
35 simplrr 801 . . . . . 6  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  b  <_  a
)  ->  B  =  ( `' D " ( 0 [,) b ) ) )
36 simplrl 800 . . . . . 6  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  b  <_  a
)  ->  A  =  ( `' D " ( 0 [,) a ) ) )
3734, 35, 363sstr4d 3648 . . . . 5  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  b  <_  a
)  ->  B  C_  A
)
3837olcd 408 . . . 4  |-  ( ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) ) )  /\  b  <_  a
)  ->  ( A  C_  B  \/  B  C_  A ) )
392, 4, 22, 38lecasei 10143 . . 3  |-  ( ( ( a  e.  RR+  /\  b  e.  RR+ )  /\  ( A  =  ( `' D " ( 0 [,) a ) )  /\  B  =  ( `' D " ( 0 [,) b ) ) ) )  ->  ( A  C_  B  \/  B  C_  A ) )
4039adantlll 754 . 2  |-  ( ( ( ( ( D  e.  (PsMet `  X
)  /\  A  e.  F  /\  B  e.  F
)  /\  a  e.  RR+ )  /\  b  e.  RR+ )  /\  ( A  =  ( `' D " ( 0 [,) a ) )  /\  B  =  ( `' D " ( 0 [,) b ) ) ) )  ->  ( A  C_  B  \/  B  C_  A ) )
41 metust.1 . . . . . 6  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
4241metustel 22355 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  ( A  e.  F  <->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a
) ) ) )
4342biimpa 501 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F )  ->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) )
44433adant3 1081 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F  /\  B  e.  F )  ->  E. a  e.  RR+  A  =  ( `' D " ( 0 [,) a ) ) )
45 oveq2 6658 . . . . . . . . . 10  |-  ( a  =  b  ->  (
0 [,) a )  =  ( 0 [,) b ) )
4645imaeq2d 5466 . . . . . . . . 9  |-  ( a  =  b  ->  ( `' D " ( 0 [,) a ) )  =  ( `' D " ( 0 [,) b
) ) )
4746cbvmptv 4750 . . . . . . . 8  |-  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  =  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) )
4847rneqi 5352 . . . . . . 7  |-  ran  (
a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  =  ran  (
b  e.  RR+  |->  ( `' D " ( 0 [,) b ) ) )
4941, 48eqtri 2644 . . . . . 6  |-  F  =  ran  ( b  e.  RR+  |->  ( `' D " ( 0 [,) b
) ) )
5049metustel 22355 . . . . 5  |-  ( D  e.  (PsMet `  X
)  ->  ( B  e.  F  <->  E. b  e.  RR+  B  =  ( `' D " ( 0 [,) b
) ) ) )
5150biimpa 501 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  B  e.  F )  ->  E. b  e.  RR+  B  =  ( `' D " ( 0 [,) b ) ) )
52513adant2 1080 . . 3  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F  /\  B  e.  F )  ->  E. b  e.  RR+  B  =  ( `' D " ( 0 [,) b ) ) )
53 reeanv 3107 . . 3  |-  ( E. a  e.  RR+  E. b  e.  RR+  ( A  =  ( `' D "
( 0 [,) a
) )  /\  B  =  ( `' D " ( 0 [,) b
) ) )  <->  ( E. a  e.  RR+  A  =  ( `' D "
( 0 [,) a
) )  /\  E. b  e.  RR+  B  =  ( `' D "
( 0 [,) b
) ) ) )
5444, 52, 53sylanbrc 698 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F  /\  B  e.  F )  ->  E. a  e.  RR+  E. b  e.  RR+  ( A  =  ( `' D " ( 0 [,) a ) )  /\  B  =  ( `' D " ( 0 [,) b ) ) ) )
5540, 54r19.29vva 3081 1  |-  ( ( D  e.  (PsMet `  X )  /\  A  e.  F  /\  B  e.  F )  ->  ( A  C_  B  \/  B  C_  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   ran crn 5115   "cima 5117   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   RR*cxr 10073    <_ cle 10075   RR+crp 11832   [,)cico 12177  PsMetcpsmet 19730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-rp 11833  df-ico 12181
This theorem is referenced by:  metustfbas  22362
  Copyright terms: Public domain W3C validator