Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kelac1 Structured version   Visualization version   GIF version

Theorem kelac1 37633
Description: Kelley's choice, basic form: if a collection of sets can be cast as closed sets in the factors of a topology, and there is a definable element in each topology (which need not be in the closed set - if it were this would be trivial), then compactness (via finite intersection) guarantees that the final product is nonempty. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
kelac1.z ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
kelac1.j ((𝜑𝑥𝐼) → 𝐽 ∈ Top)
kelac1.c ((𝜑𝑥𝐼) → 𝐶 ∈ (Clsd‘𝐽))
kelac1.b ((𝜑𝑥𝐼) → 𝐵:𝑆1-1-onto𝐶)
kelac1.u ((𝜑𝑥𝐼) → 𝑈 𝐽)
kelac1.k (𝜑 → (∏t‘(𝑥𝐼𝐽)) ∈ Comp)
Assertion
Ref Expression
kelac1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐼
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑆(𝑥)   𝑈(𝑥)   𝐽(𝑥)

Proof of Theorem kelac1
Dummy variables 𝑓 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kelac1.c . . . . . . 7 ((𝜑𝑥𝐼) → 𝐶 ∈ (Clsd‘𝐽))
2 eqid 2622 . . . . . . . 8 𝐽 = 𝐽
32cldss 20833 . . . . . . 7 (𝐶 ∈ (Clsd‘𝐽) → 𝐶 𝐽)
41, 3syl 17 . . . . . 6 ((𝜑𝑥𝐼) → 𝐶 𝐽)
54ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑥𝐼 𝐶 𝐽)
6 boxriin 7950 . . . . 5 (∀𝑥𝐼 𝐶 𝐽X𝑥𝐼 𝐶 = (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
75, 6syl 17 . . . 4 (𝜑X𝑥𝐼 𝐶 = (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
8 kelac1.k . . . . . . . . 9 (𝜑 → (∏t‘(𝑥𝐼𝐽)) ∈ Comp)
9 cmptop 21198 . . . . . . . . 9 ((∏t‘(𝑥𝐼𝐽)) ∈ Comp → (∏t‘(𝑥𝐼𝐽)) ∈ Top)
10 0ntop 20710 . . . . . . . . . . 11 ¬ ∅ ∈ Top
11 fvprc 6185 . . . . . . . . . . . 12 (¬ (𝑥𝐼𝐽) ∈ V → (∏t‘(𝑥𝐼𝐽)) = ∅)
1211eleq1d 2686 . . . . . . . . . . 11 (¬ (𝑥𝐼𝐽) ∈ V → ((∏t‘(𝑥𝐼𝐽)) ∈ Top ↔ ∅ ∈ Top))
1310, 12mtbiri 317 . . . . . . . . . 10 (¬ (𝑥𝐼𝐽) ∈ V → ¬ (∏t‘(𝑥𝐼𝐽)) ∈ Top)
1413con4i 113 . . . . . . . . 9 ((∏t‘(𝑥𝐼𝐽)) ∈ Top → (𝑥𝐼𝐽) ∈ V)
158, 9, 143syl 18 . . . . . . . 8 (𝜑 → (𝑥𝐼𝐽) ∈ V)
16 kelac1.j . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝐽 ∈ Top)
17 eqid 2622 . . . . . . . . 9 (𝑥𝐼𝐽) = (𝑥𝐼𝐽)
1816, 17fmptd 6385 . . . . . . . 8 (𝜑 → (𝑥𝐼𝐽):𝐼⟶Top)
19 dmfex 7124 . . . . . . . 8 (((𝑥𝐼𝐽) ∈ V ∧ (𝑥𝐼𝐽):𝐼⟶Top) → 𝐼 ∈ V)
2015, 18, 19syl2anc 693 . . . . . . 7 (𝜑𝐼 ∈ V)
2116ralrimiva 2966 . . . . . . 7 (𝜑 → ∀𝑥𝐼 𝐽 ∈ Top)
22 eqid 2622 . . . . . . . 8 (∏t‘(𝑥𝐼𝐽)) = (∏t‘(𝑥𝐼𝐽))
2322ptunimpt 21398 . . . . . . 7 ((𝐼 ∈ V ∧ ∀𝑥𝐼 𝐽 ∈ Top) → X𝑥𝐼 𝐽 = (∏t‘(𝑥𝐼𝐽)))
2420, 21, 23syl2anc 693 . . . . . 6 (𝜑X𝑥𝐼 𝐽 = (∏t‘(𝑥𝐼𝐽)))
2524ineq1d 3813 . . . . 5 (𝜑 → (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) = ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
26 eqid 2622 . . . . . 6 (∏t‘(𝑥𝐼𝐽)) = (∏t‘(𝑥𝐼𝐽))
272topcld 20839 . . . . . . . . . 10 (𝐽 ∈ Top → 𝐽 ∈ (Clsd‘𝐽))
2816, 27syl 17 . . . . . . . . 9 ((𝜑𝑥𝐼) → 𝐽 ∈ (Clsd‘𝐽))
291, 28ifcld 4131 . . . . . . . 8 ((𝜑𝑥𝐼) → if(𝑥 = 𝑦, 𝐶, 𝐽) ∈ (Clsd‘𝐽))
3020, 16, 29ptcldmpt 21417 . . . . . . 7 (𝜑X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ∈ (Clsd‘(∏t‘(𝑥𝐼𝐽))))
3130adantr 481 . . . . . 6 ((𝜑𝑦𝐼) → X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ∈ (Clsd‘(∏t‘(𝑥𝐼𝐽))))
32 simprr 796 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → 𝑧 ∈ Fin)
33 kelac1.b . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → 𝐵:𝑆1-1-onto𝐶)
34 f1ofo 6144 . . . . . . . . . . . . . . 15 (𝐵:𝑆1-1-onto𝐶𝐵:𝑆onto𝐶)
35 foima 6120 . . . . . . . . . . . . . . 15 (𝐵:𝑆onto𝐶 → (𝐵𝑆) = 𝐶)
3633, 34, 353syl 18 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → (𝐵𝑆) = 𝐶)
3736eqcomd 2628 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 𝐶 = (𝐵𝑆))
38 kelac1.z . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → 𝑆 ≠ ∅)
39 f1ofn 6138 . . . . . . . . . . . . . . . . 17 (𝐵:𝑆1-1-onto𝐶𝐵 Fn 𝑆)
4033, 39syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → 𝐵 Fn 𝑆)
41 ssid 3624 . . . . . . . . . . . . . . . 16 𝑆𝑆
42 fnimaeq0 6013 . . . . . . . . . . . . . . . 16 ((𝐵 Fn 𝑆𝑆𝑆) → ((𝐵𝑆) = ∅ ↔ 𝑆 = ∅))
4340, 41, 42sylancl 694 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → ((𝐵𝑆) = ∅ ↔ 𝑆 = ∅))
4443necon3bid 2838 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐼) → ((𝐵𝑆) ≠ ∅ ↔ 𝑆 ≠ ∅))
4538, 44mpbird 247 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → (𝐵𝑆) ≠ ∅)
4637, 45eqnetrd 2861 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝐶 ≠ ∅)
47 n0 3931 . . . . . . . . . . . 12 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
4846, 47sylib 208 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → ∃𝑤 𝑤𝐶)
49 rexv 3220 . . . . . . . . . . 11 (∃𝑤 ∈ V 𝑤𝐶 ↔ ∃𝑤 𝑤𝐶)
5048, 49sylibr 224 . . . . . . . . . 10 ((𝜑𝑥𝐼) → ∃𝑤 ∈ V 𝑤𝐶)
5150ralrimiva 2966 . . . . . . . . 9 (𝜑 → ∀𝑥𝐼𝑤 ∈ V 𝑤𝐶)
52 ssralv 3666 . . . . . . . . . 10 (𝑧𝐼 → (∀𝑥𝐼𝑤 ∈ V 𝑤𝐶 → ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶))
5352adantr 481 . . . . . . . . 9 ((𝑧𝐼𝑧 ∈ Fin) → (∀𝑥𝐼𝑤 ∈ V 𝑤𝐶 → ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶))
5451, 53mpan9 486 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶)
55 eleq1 2689 . . . . . . . . 9 (𝑤 = (𝑓𝑥) → (𝑤𝐶 ↔ (𝑓𝑥) ∈ 𝐶))
5655ac6sfi 8204 . . . . . . . 8 ((𝑧 ∈ Fin ∧ ∀𝑥𝑧𝑤 ∈ V 𝑤𝐶) → ∃𝑓(𝑓:𝑧⟶V ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶))
5732, 54, 56syl2anc 693 . . . . . . 7 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → ∃𝑓(𝑓:𝑧⟶V ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶))
5824eqcomd 2628 . . . . . . . . . . 11 (𝜑 (∏t‘(𝑥𝐼𝐽)) = X𝑥𝐼 𝐽)
5958ineq1d 3813 . . . . . . . . . 10 (𝜑 → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) = (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
6059ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) = (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
61 iftrue 4092 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑧 → if(𝑥𝑧, (𝑓𝑥), 𝑈) = (𝑓𝑥))
6261ad2antrl 764 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = (𝑓𝑥))
63 simpll 790 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → 𝜑)
64 simprl 794 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → 𝑧𝐼)
6564sselda 3603 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → 𝑥𝐼)
6663, 65, 4syl2anc 693 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → 𝐶 𝐽)
6766sseld 3602 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → ((𝑓𝑥) ∈ 𝐶 → (𝑓𝑥) ∈ 𝐽))
6867impr 649 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → (𝑓𝑥) ∈ 𝐽)
6962, 68eqeltrd 2701 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
7069expr 643 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → ((𝑓𝑥) ∈ 𝐶 → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
7170ralimdva 2962 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶 → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
7271imp 445 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
73 eldifn 3733 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝐼𝑧) → ¬ 𝑥𝑧)
7473iffalsed 4097 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐼𝑧) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = 𝑈)
7574adantl 482 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = 𝑈)
76 eldifi 3732 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐼𝑧) → 𝑥𝐼)
77 kelac1.u . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐼) → 𝑈 𝐽)
7876, 77sylan2 491 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝐼𝑧)) → 𝑈 𝐽)
7975, 78eqeltrd 2701 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
8079ralrimiva 2966 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
8180ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
82 ralun 3795 . . . . . . . . . . . . . 14 ((∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽 ∧ ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
8372, 81, 82syl2anc 693 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
84 undif 4049 . . . . . . . . . . . . . . . . 17 (𝑧𝐼 ↔ (𝑧 ∪ (𝐼𝑧)) = 𝐼)
8584biimpi 206 . . . . . . . . . . . . . . . 16 (𝑧𝐼 → (𝑧 ∪ (𝐼𝑧)) = 𝐼)
8685ad2antrl 764 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (𝑧 ∪ (𝐼𝑧)) = 𝐼)
8786raleqdv 3144 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
8887adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
8983, 88mpbid 222 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽)
9020ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → 𝐼 ∈ V)
91 mptelixpg 7945 . . . . . . . . . . . . 13 (𝐼 ∈ V → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
9290, 91syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 𝐽 ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ 𝐽))
9389, 92mpbird 247 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 𝐽)
94 eleq2 2690 . . . . . . . . . . . . . . . . . . . . . 22 (𝐶 = if(𝑥 = 𝑦, 𝐶, 𝐽) → ((𝑓𝑥) ∈ 𝐶 ↔ (𝑓𝑥) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
95 eleq2 2690 . . . . . . . . . . . . . . . . . . . . . 22 ( 𝐽 = if(𝑥 = 𝑦, 𝐶, 𝐽) → ((𝑓𝑥) ∈ 𝐽 ↔ (𝑓𝑥) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
96 simplrr 801 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) ∧ 𝑥 = 𝑦) → (𝑓𝑥) ∈ 𝐶)
9768adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) ∧ ¬ 𝑥 = 𝑦) → (𝑓𝑥) ∈ 𝐽)
9894, 95, 96, 97ifbothda 4123 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → (𝑓𝑥) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
9962, 98eqeltrd 2701 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑥𝑧 ∧ (𝑓𝑥) ∈ 𝐶)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
10099expr 643 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑥𝑧) → ((𝑓𝑥) ∈ 𝐶 → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
101100ralimdva 2962 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶 → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
102101imp 445 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
103102adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
10478adantlr 751 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑈 𝐽)
10574adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) = 𝑈)
106 incom 3805 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐼𝑧) ∩ 𝑧) = (𝑧 ∩ (𝐼𝑧))
107 disjdif 4040 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∩ (𝐼𝑧)) = ∅
108106, 107eqtri 2644 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐼𝑧) ∩ 𝑧) = ∅
109108a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → ((𝐼𝑧) ∩ 𝑧) = ∅)
110 simpr 477 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑥 ∈ (𝐼𝑧))
111 simplr 792 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑦𝑧)
112 disjne 4022 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐼𝑧) ∩ 𝑧) = ∅ ∧ 𝑥 ∈ (𝐼𝑧) ∧ 𝑦𝑧) → 𝑥𝑦)
113109, 110, 111, 112syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → 𝑥𝑦)
114113neneqd 2799 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → ¬ 𝑥 = 𝑦)
115114iffalsed 4097 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → if(𝑥 = 𝑦, 𝐶, 𝐽) = 𝐽)
116104, 105, 1153eltr4d 2716 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑦𝑧) ∧ 𝑥 ∈ (𝐼𝑧)) → if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
117116ralrimiva 2966 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝑧) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
118117adantlr 751 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ 𝑦𝑧) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
119118adantlr 751 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
120 ralun 3795 . . . . . . . . . . . . . . . 16 ((∀𝑥𝑧 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽) ∧ ∀𝑥 ∈ (𝐼𝑧)if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
121103, 119, 120syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
12286raleqdv 3144 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
123122ad2antrr 762 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → (∀𝑥 ∈ (𝑧 ∪ (𝐼𝑧))if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
124121, 123mpbid 222 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽))
12520ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → 𝐼 ∈ V)
126 mptelixpg 7945 . . . . . . . . . . . . . . 15 (𝐼 ∈ V → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
127125, 126syl 17 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑥𝐼 if(𝑥𝑧, (𝑓𝑥), 𝑈) ∈ if(𝑥 = 𝑦, 𝐶, 𝐽)))
128124, 127mpbird 247 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) ∧ 𝑦𝑧) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽))
129128ralrimiva 2966 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ∀𝑦𝑧 (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽))
130 mptexg 6484 . . . . . . . . . . . . . . 15 (𝐼 ∈ V → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V)
13120, 130syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V)
132131ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V)
133 eliin 4525 . . . . . . . . . . . . 13 ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ V → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑦𝑧 (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
134132, 133syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽) ↔ ∀𝑦𝑧 (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
135129, 134mpbird 247 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽))
13693, 135elind 3798 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)))
137 ne0i 3921 . . . . . . . . . 10 ((𝑥𝐼 ↦ if(𝑥𝑧, (𝑓𝑥), 𝑈)) ∈ (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) → (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
138136, 137syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → (X𝑥𝐼 𝐽 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
13960, 138eqnetrd 2861 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
140139adantrl 752 . . . . . . 7 (((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) ∧ (𝑓:𝑧⟶V ∧ ∀𝑥𝑧 (𝑓𝑥) ∈ 𝐶)) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
14157, 140exlimddv 1863 . . . . . 6 ((𝜑 ∧ (𝑧𝐼𝑧 ∈ Fin)) → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝑧 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
14226, 8, 31, 141cmpfiiin 37260 . . . . 5 (𝜑 → ( (∏t‘(𝑥𝐼𝐽)) ∩ 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
14325, 142eqnetrd 2861 . . . 4 (𝜑 → (X𝑥𝐼 𝐽 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐶, 𝐽)) ≠ ∅)
1447, 143eqnetrd 2861 . . 3 (𝜑X𝑥𝐼 𝐶 ≠ ∅)
145 n0 3931 . . 3 (X𝑥𝐼 𝐶 ≠ ∅ ↔ ∃𝑦 𝑦X𝑥𝐼 𝐶)
146144, 145sylib 208 . 2 (𝜑 → ∃𝑦 𝑦X𝑥𝐼 𝐶)
147 elixp2 7912 . . . . . 6 (𝑦X𝑥𝐼 𝐶 ↔ (𝑦 ∈ V ∧ 𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶))
148147simp3bi 1078 . . . . 5 (𝑦X𝑥𝐼 𝐶 → ∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶)
149 f1ocnv 6149 . . . . . . . 8 (𝐵:𝑆1-1-onto𝐶𝐵:𝐶1-1-onto𝑆)
150 f1of 6137 . . . . . . . 8 (𝐵:𝐶1-1-onto𝑆𝐵:𝐶𝑆)
151 ffvelrn 6357 . . . . . . . . 9 ((𝐵:𝐶𝑆 ∧ (𝑦𝑥) ∈ 𝐶) → (𝐵‘(𝑦𝑥)) ∈ 𝑆)
152151ex 450 . . . . . . . 8 (𝐵:𝐶𝑆 → ((𝑦𝑥) ∈ 𝐶 → (𝐵‘(𝑦𝑥)) ∈ 𝑆))
15333, 149, 150, 1524syl 19 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝑦𝑥) ∈ 𝐶 → (𝐵‘(𝑦𝑥)) ∈ 𝑆))
154153ralimdva 2962 . . . . . 6 (𝜑 → (∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶 → ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
155154imp 445 . . . . 5 ((𝜑 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ 𝐶) → ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆)
156148, 155sylan2 491 . . . 4 ((𝜑𝑦X𝑥𝐼 𝐶) → ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆)
157 mptelixpg 7945 . . . . . 6 (𝐼 ∈ V → ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆 ↔ ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
15820, 157syl 17 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆 ↔ ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
159158adantr 481 . . . 4 ((𝜑𝑦X𝑥𝐼 𝐶) → ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆 ↔ ∀𝑥𝐼 (𝐵‘(𝑦𝑥)) ∈ 𝑆))
160156, 159mpbird 247 . . 3 ((𝜑𝑦X𝑥𝐼 𝐶) → (𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆)
161 ne0i 3921 . . 3 ((𝑥𝐼 ↦ (𝐵‘(𝑦𝑥))) ∈ X𝑥𝐼 𝑆X𝑥𝐼 𝑆 ≠ ∅)
162160, 161syl 17 . 2 ((𝜑𝑦X𝑥𝐼 𝐶) → X𝑥𝐼 𝑆 ≠ ∅)
163146, 162exlimddv 1863 1 (𝜑X𝑥𝐼 𝑆 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  ifcif 4086   cuni 4436   ciin 4521  cmpt 4729  ccnv 5113  cima 5117   Fn wfn 5883  wf 5884  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888  Xcixp 7908  Fincfn 7955  tcpt 16099  Topctop 20698  Clsdccld 20820  Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-topgen 16104  df-pt 16105  df-top 20699  df-bases 20750  df-cld 20823  df-cmp 21190
This theorem is referenced by:  kelac2  37635
  Copyright terms: Public domain W3C validator