MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2cl Structured version   Visualization version   GIF version

Theorem curf2cl 16871
Description: The curry functor at a morphism is a natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curf2.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curf2.a 𝐴 = (Base‘𝐶)
curf2.c (𝜑𝐶 ∈ Cat)
curf2.d (𝜑𝐷 ∈ Cat)
curf2.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curf2.b 𝐵 = (Base‘𝐷)
curf2.h 𝐻 = (Hom ‘𝐶)
curf2.i 𝐼 = (Id‘𝐷)
curf2.x (𝜑𝑋𝐴)
curf2.y (𝜑𝑌𝐴)
curf2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
curf2.l 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
curf2.n 𝑁 = (𝐷 Nat 𝐸)
Assertion
Ref Expression
curf2cl (𝜑𝐿 ∈ (((1st𝐺)‘𝑋)𝑁((1st𝐺)‘𝑌)))

Proof of Theorem curf2cl
Dummy variables 𝑧 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curf2.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curf2.a . . . 4 𝐴 = (Base‘𝐶)
3 curf2.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curf2.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curf2.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curf2.b . . . 4 𝐵 = (Base‘𝐷)
7 curf2.h . . . 4 𝐻 = (Hom ‘𝐶)
8 curf2.i . . . 4 𝐼 = (Id‘𝐷)
9 curf2.x . . . 4 (𝜑𝑋𝐴)
10 curf2.y . . . 4 (𝜑𝑌𝐴)
11 curf2.k . . . 4 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
12 curf2.l . . . 4 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12curf2 16869 . . 3 (𝜑𝐿 = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))))
14 eqid 2622 . . . . . . . . . 10 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
1514, 2, 6xpcbas 16818 . . . . . . . . 9 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
16 eqid 2622 . . . . . . . . 9 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
17 eqid 2622 . . . . . . . . 9 (Hom ‘𝐸) = (Hom ‘𝐸)
18 relfunc 16522 . . . . . . . . . . 11 Rel ((𝐶 ×c 𝐷) Func 𝐸)
19 1st2ndbr 7217 . . . . . . . . . . 11 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
2018, 5, 19sylancr 695 . . . . . . . . . 10 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
2120adantr 481 . . . . . . . . 9 ((𝜑𝑧𝐵) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
22 opelxpi 5148 . . . . . . . . . 10 ((𝑋𝐴𝑧𝐵) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
239, 22sylan 488 . . . . . . . . 9 ((𝜑𝑧𝐵) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
24 opelxpi 5148 . . . . . . . . . 10 ((𝑌𝐴𝑧𝐵) → ⟨𝑌, 𝑧⟩ ∈ (𝐴 × 𝐵))
2510, 24sylan 488 . . . . . . . . 9 ((𝜑𝑧𝐵) → ⟨𝑌, 𝑧⟩ ∈ (𝐴 × 𝐵))
2615, 16, 17, 21, 23, 25funcf2 16528 . . . . . . . 8 ((𝜑𝑧𝐵) → (⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩):(⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩)))
27 eqid 2622 . . . . . . . . . 10 (Hom ‘𝐷) = (Hom ‘𝐷)
289adantr 481 . . . . . . . . . 10 ((𝜑𝑧𝐵) → 𝑋𝐴)
29 simpr 477 . . . . . . . . . 10 ((𝜑𝑧𝐵) → 𝑧𝐵)
3010adantr 481 . . . . . . . . . 10 ((𝜑𝑧𝐵) → 𝑌𝐴)
3114, 2, 6, 7, 27, 28, 29, 30, 29, 16xpchom2 16826 . . . . . . . . 9 ((𝜑𝑧𝐵) → (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑧⟩) = ((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧)))
3231feq2d 6031 . . . . . . . 8 ((𝜑𝑧𝐵) → ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩):(⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩)) ↔ (⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩):((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧))⟶(((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩))))
3326, 32mpbid 222 . . . . . . 7 ((𝜑𝑧𝐵) → (⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩):((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧))⟶(((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩)))
3411adantr 481 . . . . . . 7 ((𝜑𝑧𝐵) → 𝐾 ∈ (𝑋𝐻𝑌))
354adantr 481 . . . . . . . 8 ((𝜑𝑧𝐵) → 𝐷 ∈ Cat)
366, 27, 8, 35, 29catidcl 16343 . . . . . . 7 ((𝜑𝑧𝐵) → (𝐼𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧))
3733, 34, 36fovrnd 6806 . . . . . 6 ((𝜑𝑧𝐵) → (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) ∈ (((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩)))
383adantr 481 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝐶 ∈ Cat)
395adantr 481 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
40 eqid 2622 . . . . . . . . 9 ((1st𝐺)‘𝑋) = ((1st𝐺)‘𝑋)
411, 2, 38, 35, 39, 6, 28, 40, 29curf11 16866 . . . . . . . 8 ((𝜑𝑧𝐵) → ((1st ‘((1st𝐺)‘𝑋))‘𝑧) = (𝑋(1st𝐹)𝑧))
42 df-ov 6653 . . . . . . . 8 (𝑋(1st𝐹)𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩)
4341, 42syl6eq 2672 . . . . . . 7 ((𝜑𝑧𝐵) → ((1st ‘((1st𝐺)‘𝑋))‘𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩))
44 eqid 2622 . . . . . . . . 9 ((1st𝐺)‘𝑌) = ((1st𝐺)‘𝑌)
451, 2, 38, 35, 39, 6, 30, 44, 29curf11 16866 . . . . . . . 8 ((𝜑𝑧𝐵) → ((1st ‘((1st𝐺)‘𝑌))‘𝑧) = (𝑌(1st𝐹)𝑧))
46 df-ov 6653 . . . . . . . 8 (𝑌(1st𝐹)𝑧) = ((1st𝐹)‘⟨𝑌, 𝑧⟩)
4745, 46syl6eq 2672 . . . . . . 7 ((𝜑𝑧𝐵) → ((1st ‘((1st𝐺)‘𝑌))‘𝑧) = ((1st𝐹)‘⟨𝑌, 𝑧⟩))
4843, 47oveq12d 6668 . . . . . 6 ((𝜑𝑧𝐵) → (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)) = (((1st𝐹)‘⟨𝑋, 𝑧⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑌, 𝑧⟩)))
4937, 48eleqtrrd 2704 . . . . 5 ((𝜑𝑧𝐵) → (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) ∈ (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)))
5049ralrimiva 2966 . . . 4 (𝜑 → ∀𝑧𝐵 (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) ∈ (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)))
51 fvex 6201 . . . . . 6 (Base‘𝐷) ∈ V
526, 51eqeltri 2697 . . . . 5 𝐵 ∈ V
53 mptelixpg 7945 . . . . 5 (𝐵 ∈ V → ((𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))) ∈ X𝑧𝐵 (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)) ↔ ∀𝑧𝐵 (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) ∈ (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧))))
5452, 53ax-mp 5 . . . 4 ((𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))) ∈ X𝑧𝐵 (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)) ↔ ∀𝑧𝐵 (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) ∈ (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)))
5550, 54sylibr 224 . . 3 (𝜑 → (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))) ∈ X𝑧𝐵 (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)))
5613, 55eqeltrd 2701 . 2 (𝜑𝐿X𝑧𝐵 (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)))
57 eqid 2622 . . . . . . . . . 10 (Id‘𝐶) = (Id‘𝐶)
583adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐶 ∈ Cat)
599adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑋𝐴)
60 eqid 2622 . . . . . . . . . 10 (comp‘𝐶) = (comp‘𝐶)
6110adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑌𝐴)
6211adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐾 ∈ (𝑋𝐻𝑌))
632, 7, 57, 58, 59, 60, 61, 62catrid 16345 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐾(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = 𝐾)
642, 7, 57, 58, 59, 60, 61, 62catlid 16344 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐾) = 𝐾)
6563, 64eqtr4d 2659 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐾(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐾))
664adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐷 ∈ Cat)
67 simpr1 1067 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑧𝐵)
68 eqid 2622 . . . . . . . . . 10 (comp‘𝐷) = (comp‘𝐷)
69 simpr2 1068 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑤𝐵)
70 simpr3 1069 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))
716, 27, 8, 66, 67, 68, 69, 70catlid 16344 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝐼𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐷)𝑤)𝑓) = 𝑓)
726, 27, 8, 66, 67, 68, 69, 70catrid 16345 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝑓(⟨𝑧, 𝑧⟩(comp‘𝐷)𝑤)(𝐼𝑧)) = 𝑓)
7371, 72eqtr4d 2659 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝐼𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐷)𝑤)𝑓) = (𝑓(⟨𝑧, 𝑧⟩(comp‘𝐷)𝑤)(𝐼𝑧)))
7465, 73opeq12d 4410 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨(𝐾(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)), ((𝐼𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐷)𝑤)𝑓)⟩ = ⟨(((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐾), (𝑓(⟨𝑧, 𝑧⟩(comp‘𝐷)𝑤)(𝐼𝑧))⟩)
75 eqid 2622 . . . . . . . 8 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
762, 7, 57, 58, 59catidcl 16343 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
776, 27, 8, 66, 69catidcl 16343 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐼𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤))
7814, 2, 6, 7, 27, 59, 67, 59, 69, 60, 68, 75, 61, 69, 76, 70, 62, 77xpcco2 16827 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝐾, (𝐼𝑤)⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑋, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑓⟩) = ⟨(𝐾(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)), ((𝐼𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐷)𝑤)𝑓)⟩)
79363ad2antr1 1226 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐼𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧))
802, 7, 57, 58, 61catidcl 16343 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑌) ∈ (𝑌𝐻𝑌))
8114, 2, 6, 7, 27, 59, 67, 61, 67, 60, 68, 75, 61, 69, 62, 79, 80, 70xpcco2 16827 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((Id‘𝐶)‘𝑌), 𝑓⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑌, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨𝐾, (𝐼𝑧)⟩) = ⟨(((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐾), (𝑓(⟨𝑧, 𝑧⟩(comp‘𝐷)𝑤)(𝐼𝑧))⟩)
8274, 78, 813eqtr4d 2666 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝐾, (𝐼𝑤)⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑋, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑓⟩) = (⟨((Id‘𝐶)‘𝑌), 𝑓⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑌, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨𝐾, (𝐼𝑧)⟩))
8382fveq2d 6195 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘(⟨𝐾, (𝐼𝑤)⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑋, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑓⟩)) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑌), 𝑓⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑌, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨𝐾, (𝐼𝑧)⟩)))
84 eqid 2622 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
8520adantr 481 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
86233ad2antr1 1226 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
87 opelxpi 5148 . . . . . . 7 ((𝑋𝐴𝑤𝐵) → ⟨𝑋, 𝑤⟩ ∈ (𝐴 × 𝐵))
8859, 69, 87syl2anc 693 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑤⟩ ∈ (𝐴 × 𝐵))
89 opelxpi 5148 . . . . . . 7 ((𝑌𝐴𝑤𝐵) → ⟨𝑌, 𝑤⟩ ∈ (𝐴 × 𝐵))
9061, 69, 89syl2anc 693 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑌, 𝑤⟩ ∈ (𝐴 × 𝐵))
91 opelxpi 5148 . . . . . . . 8 ((((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤)) → ⟨((Id‘𝐶)‘𝑋), 𝑓⟩ ∈ ((𝑋𝐻𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
9276, 70, 91syl2anc 693 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑓⟩ ∈ ((𝑋𝐻𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
9314, 2, 6, 7, 27, 59, 67, 59, 69, 16xpchom2 16826 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩) = ((𝑋𝐻𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
9492, 93eleqtrrd 2704 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑓⟩ ∈ (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩))
95 opelxpi 5148 . . . . . . . 8 ((𝐾 ∈ (𝑋𝐻𝑌) ∧ (𝐼𝑤) ∈ (𝑤(Hom ‘𝐷)𝑤)) → ⟨𝐾, (𝐼𝑤)⟩ ∈ ((𝑋𝐻𝑌) × (𝑤(Hom ‘𝐷)𝑤)))
9662, 77, 95syl2anc 693 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝐾, (𝐼𝑤)⟩ ∈ ((𝑋𝐻𝑌) × (𝑤(Hom ‘𝐷)𝑤)))
9714, 2, 6, 7, 27, 59, 69, 61, 69, 16xpchom2 16826 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩) = ((𝑋𝐻𝑌) × (𝑤(Hom ‘𝐷)𝑤)))
9896, 97eleqtrrd 2704 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝐾, (𝐼𝑤)⟩ ∈ (⟨𝑋, 𝑤⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩))
9915, 16, 75, 84, 85, 86, 88, 90, 94, 98funcco 16531 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘(⟨𝐾, (𝐼𝑤)⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑋, 𝑤⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑓⟩)) = (((⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨𝐾, (𝐼𝑤)⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑋, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑓⟩)))
100253ad2antr1 1226 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑌, 𝑧⟩ ∈ (𝐴 × 𝐵))
101 opelxpi 5148 . . . . . . . 8 ((𝐾 ∈ (𝑋𝐻𝑌) ∧ (𝐼𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧)) → ⟨𝐾, (𝐼𝑧)⟩ ∈ ((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧)))
10262, 79, 101syl2anc 693 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝐾, (𝐼𝑧)⟩ ∈ ((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧)))
10314, 2, 6, 7, 27, 59, 67, 61, 67, 16xpchom2 16826 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑧⟩) = ((𝑋𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑧)))
104102, 103eleqtrrd 2704 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝐾, (𝐼𝑧)⟩ ∈ (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑧⟩))
105 opelxpi 5148 . . . . . . . 8 ((((Id‘𝐶)‘𝑌) ∈ (𝑌𝐻𝑌) ∧ 𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤)) → ⟨((Id‘𝐶)‘𝑌), 𝑓⟩ ∈ ((𝑌𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑤)))
10680, 70, 105syl2anc 693 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑌), 𝑓⟩ ∈ ((𝑌𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑤)))
10714, 2, 6, 7, 27, 61, 67, 61, 69, 16xpchom2 16826 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑌, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩) = ((𝑌𝐻𝑌) × (𝑧(Hom ‘𝐷)𝑤)))
108106, 107eleqtrrd 2704 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑌), 𝑓⟩ ∈ (⟨𝑌, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩))
10915, 16, 75, 84, 85, 86, 100, 90, 104, 108funcco 16531 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑌), 𝑓⟩(⟨⟨𝑋, 𝑧⟩, ⟨𝑌, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑌, 𝑤⟩)⟨𝐾, (𝐼𝑧)⟩)) = (((⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑌), 𝑓⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑌, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)‘⟨𝐾, (𝐼𝑧)⟩)))
11083, 99, 1093eqtr3d 2664 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨𝐾, (𝐼𝑤)⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑋, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑓⟩)) = (((⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑌), 𝑓⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑌, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)‘⟨𝐾, (𝐼𝑧)⟩)))
1115adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
1121, 2, 58, 66, 111, 6, 59, 40, 67curf11 16866 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑋))‘𝑧) = (𝑋(1st𝐹)𝑧))
113112, 42syl6eq 2672 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑋))‘𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩))
1141, 2, 58, 66, 111, 6, 59, 40, 69curf11 16866 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑋))‘𝑤) = (𝑋(1st𝐹)𝑤))
115 df-ov 6653 . . . . . . . 8 (𝑋(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩)
116114, 115syl6eq 2672 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑋))‘𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩))
117113, 116opeq12d 4410 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩ = ⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑋, 𝑤⟩)⟩)
1181, 2, 58, 66, 111, 6, 61, 44, 69curf11 16866 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑌))‘𝑤) = (𝑌(1st𝐹)𝑤))
119 df-ov 6653 . . . . . . 7 (𝑌(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑌, 𝑤⟩)
120118, 119syl6eq 2672 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑌))‘𝑤) = ((1st𝐹)‘⟨𝑌, 𝑤⟩))
121117, 120oveq12d 6668 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤)) = (⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑋, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩)))
1221, 2, 58, 66, 111, 6, 7, 8, 59, 61, 62, 12, 69curf2val 16870 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐿𝑤) = (𝐾(⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)(𝐼𝑤)))
123 df-ov 6653 . . . . . 6 (𝐾(⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)(𝐼𝑤)) = ((⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨𝐾, (𝐼𝑤)⟩)
124122, 123syl6eq 2672 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐿𝑤) = ((⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨𝐾, (𝐼𝑤)⟩))
1251, 2, 58, 66, 111, 6, 59, 40, 67, 27, 57, 69, 70curf12 16867 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)𝑓))
126 df-ov 6653 . . . . . 6 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)𝑓) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑓⟩)
127125, 126syl6eq 2672 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑓⟩))
128121, 124, 127oveq123d 6671 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝐿𝑤)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓)) = (((⟨𝑋, 𝑤⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨𝐾, (𝐼𝑤)⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑋, 𝑤⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑓⟩)))
1291, 2, 58, 66, 111, 6, 61, 44, 67curf11 16866 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑌))‘𝑧) = (𝑌(1st𝐹)𝑧))
130129, 46syl6eq 2672 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st ‘((1st𝐺)‘𝑌))‘𝑧) = ((1st𝐹)‘⟨𝑌, 𝑧⟩))
131113, 130opeq12d 4410 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩ = ⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑌, 𝑧⟩)⟩)
132131, 120oveq12d 6668 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤)) = (⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑌, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩)))
1331, 2, 58, 66, 111, 6, 61, 44, 67, 27, 57, 69, 70curf12 16867 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓) = (((Id‘𝐶)‘𝑌)(⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)𝑓))
134 df-ov 6653 . . . . . 6 (((Id‘𝐶)‘𝑌)(⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)𝑓) = ((⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑌), 𝑓⟩)
135133, 134syl6eq 2672 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓) = ((⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑌), 𝑓⟩))
1361, 2, 58, 66, 111, 6, 7, 8, 59, 61, 62, 12, 67curf2val 16870 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐿𝑧) = (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)))
137 df-ov 6653 . . . . . 6 (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)‘⟨𝐾, (𝐼𝑧)⟩)
138136, 137syl6eq 2672 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (𝐿𝑧) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)‘⟨𝐾, (𝐼𝑧)⟩))
139132, 135, 138oveq123d 6671 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))(𝐿𝑧)) = (((⟨𝑌, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑌), 𝑓⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑧⟩), ((1st𝐹)‘⟨𝑌, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑌, 𝑤⟩))((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)‘⟨𝐾, (𝐼𝑧)⟩)))
140110, 128, 1393eqtr4d 2666 . . 3 ((𝜑 ∧ (𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝐿𝑤)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓)) = (((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))(𝐿𝑧)))
141140ralrimivvva 2972 . 2 (𝜑 → ∀𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤)((𝐿𝑤)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓)) = (((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))(𝐿𝑧)))
142 curf2.n . . 3 𝑁 = (𝐷 Nat 𝐸)
1431, 2, 3, 4, 5, 6, 9, 40curf1cl 16868 . . 3 (𝜑 → ((1st𝐺)‘𝑋) ∈ (𝐷 Func 𝐸))
1441, 2, 3, 4, 5, 6, 10, 44curf1cl 16868 . . 3 (𝜑 → ((1st𝐺)‘𝑌) ∈ (𝐷 Func 𝐸))
145142, 6, 27, 17, 84, 143, 144isnat2 16608 . 2 (𝜑 → (𝐿 ∈ (((1st𝐺)‘𝑋)𝑁((1st𝐺)‘𝑌)) ↔ (𝐿X𝑧𝐵 (((1st ‘((1st𝐺)‘𝑋))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑧)) ∧ ∀𝑧𝐵𝑤𝐵𝑓 ∈ (𝑧(Hom ‘𝐷)𝑤)((𝐿𝑤)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑋))‘𝑤)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))((𝑧(2nd ‘((1st𝐺)‘𝑋))𝑤)‘𝑓)) = (((𝑧(2nd ‘((1st𝐺)‘𝑌))𝑤)‘𝑓)(⟨((1st ‘((1st𝐺)‘𝑋))‘𝑧), ((1st ‘((1st𝐺)‘𝑌))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑌))‘𝑤))(𝐿𝑧)))))
14656, 141, 145mpbir2and 957 1 (𝜑𝐿 ∈ (((1st𝐺)‘𝑋)𝑁((1st𝐺)‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cop 4183   class class class wbr 4653  cmpt 4729   × cxp 5112  Rel wrel 5119  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  Xcixp 7908  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Idccid 16326   Func cfunc 16514   Nat cnat 16601   ×c cxpc 16808   curryF ccurf 16850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-func 16518  df-nat 16603  df-xpc 16812  df-curf 16854
This theorem is referenced by:  curfcl  16872
  Copyright terms: Public domain W3C validator