MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcn Structured version   Visualization version   GIF version

Theorem ptcn 21430
Description: If every projection of a function is continuous, then the function itself is continuous into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypotheses
Ref Expression
ptcn.2 𝐾 = (∏t𝐹)
ptcn.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
ptcn.4 (𝜑𝐼𝑉)
ptcn.5 (𝜑𝐹:𝐼⟶Top)
ptcn.6 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)))
Assertion
Ref Expression
ptcn (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝐼,𝑥   𝑘,𝐽   𝜑,𝑘,𝑥   𝑘,𝑋,𝑥   𝑥,𝐾   𝑘,𝑉,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐽(𝑥)   𝐾(𝑘)

Proof of Theorem ptcn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ptcn.3 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
21adantr 481 . . . . . . . . . 10 ((𝜑𝑘𝐼) → 𝐽 ∈ (TopOn‘𝑋))
3 ptcn.5 . . . . . . . . . . . 12 (𝜑𝐹:𝐼⟶Top)
43ffvelrnda 6359 . . . . . . . . . . 11 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ Top)
5 eqid 2622 . . . . . . . . . . . 12 (𝐹𝑘) = (𝐹𝑘)
65toptopon 20722 . . . . . . . . . . 11 ((𝐹𝑘) ∈ Top ↔ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
74, 6sylib 208 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
8 ptcn.6 . . . . . . . . . 10 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)))
9 cnf2 21053 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘))) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
102, 7, 8, 9syl3anc 1326 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
11 eqid 2622 . . . . . . . . . 10 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
1211fmpt 6381 . . . . . . . . 9 (∀𝑥𝑋 𝐴 (𝐹𝑘) ↔ (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
1310, 12sylibr 224 . . . . . . . 8 ((𝜑𝑘𝐼) → ∀𝑥𝑋 𝐴 (𝐹𝑘))
1413r19.21bi 2932 . . . . . . 7 (((𝜑𝑘𝐼) ∧ 𝑥𝑋) → 𝐴 (𝐹𝑘))
1514an32s 846 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑘𝐼) → 𝐴 (𝐹𝑘))
1615ralrimiva 2966 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑘𝐼 𝐴 (𝐹𝑘))
17 ptcn.4 . . . . . . 7 (𝜑𝐼𝑉)
1817adantr 481 . . . . . 6 ((𝜑𝑥𝑋) → 𝐼𝑉)
19 mptelixpg 7945 . . . . . 6 (𝐼𝑉 → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
2018, 19syl 17 . . . . 5 ((𝜑𝑥𝑋) → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
2116, 20mpbird 247 . . . 4 ((𝜑𝑥𝑋) → (𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘))
22 ptcn.2 . . . . . . 7 𝐾 = (∏t𝐹)
2322ptuni 21397 . . . . . 6 ((𝐼𝑉𝐹:𝐼⟶Top) → X𝑘𝐼 (𝐹𝑘) = 𝐾)
2417, 3, 23syl2anc 693 . . . . 5 (𝜑X𝑘𝐼 (𝐹𝑘) = 𝐾)
2524adantr 481 . . . 4 ((𝜑𝑥𝑋) → X𝑘𝐼 (𝐹𝑘) = 𝐾)
2621, 25eleqtrd 2703 . . 3 ((𝜑𝑥𝑋) → (𝑘𝐼𝐴) ∈ 𝐾)
27 eqid 2622 . . 3 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) = (𝑥𝑋 ↦ (𝑘𝐼𝐴))
2826, 27fmptd 6385 . 2 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋 𝐾)
291adantr 481 . . . 4 ((𝜑𝑧𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3017adantr 481 . . . 4 ((𝜑𝑧𝑋) → 𝐼𝑉)
313adantr 481 . . . 4 ((𝜑𝑧𝑋) → 𝐹:𝐼⟶Top)
32 simpr 477 . . . 4 ((𝜑𝑧𝑋) → 𝑧𝑋)
338adantlr 751 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)))
34 simplr 792 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → 𝑧𝑋)
35 toponuni 20719 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
361, 35syl 17 . . . . . . 7 (𝜑𝑋 = 𝐽)
3736ad2antrr 762 . . . . . 6 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → 𝑋 = 𝐽)
3834, 37eleqtrd 2703 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → 𝑧 𝐽)
39 eqid 2622 . . . . . 6 𝐽 = 𝐽
4039cncnpi 21082 . . . . 5 (((𝑥𝑋𝐴) ∈ (𝐽 Cn (𝐹𝑘)) ∧ 𝑧 𝐽) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝑧))
4133, 38, 40syl2anc 693 . . . 4 (((𝜑𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝑧))
4222, 29, 30, 31, 32, 41ptcnp 21425 . . 3 ((𝜑𝑧𝑋) → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))
4342ralrimiva 2966 . 2 (𝜑 → ∀𝑧𝑋 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))
44 pttop 21385 . . . . . 6 ((𝐼𝑉𝐹:𝐼⟶Top) → (∏t𝐹) ∈ Top)
4517, 3, 44syl2anc 693 . . . . 5 (𝜑 → (∏t𝐹) ∈ Top)
4622, 45syl5eqel 2705 . . . 4 (𝜑𝐾 ∈ Top)
47 eqid 2622 . . . . 5 𝐾 = 𝐾
4847toptopon 20722 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
4946, 48sylib 208 . . 3 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
50 cncnp 21084 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾)) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋 𝐾 ∧ ∀𝑧𝑋 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))))
511, 49, 50syl2anc 693 . 2 (𝜑 → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋 𝐾 ∧ ∀𝑧𝑋 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝑧))))
5228, 43, 51mpbir2and 957 1 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912   cuni 4436  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  Xcixp 7908  tcpt 16099  Topctop 20698  TopOnctopon 20715   Cn ccn 21028   CnP ccnp 21029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-topgen 16104  df-pt 16105  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cnp 21032
This theorem is referenced by:  pt1hmeo  21609  ptunhmeo  21611  symgtgp  21905  prdstmdd  21927  prdstgpd  21928  ptpconn  31215  broucube  33443
  Copyright terms: Public domain W3C validator