MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem4c Structured version   Visualization version   GIF version

Theorem yonedalem4c 16917
Description: Lemma for yoneda 16923. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem4.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
yonedalem4.p (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
Assertion
Ref Expression
yonedalem4c (𝜑 → ((𝐹𝑁𝑋)‘𝐴) ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 1   𝑢,𝑔,𝐴,𝑦   𝑢,𝑓,𝐶,𝑔,𝑥,𝑦   𝑓,𝐸,𝑔,𝑢,𝑦   𝑓,𝐹,𝑔,𝑢,𝑥,𝑦   𝐵,𝑓,𝑔,𝑢,𝑥,𝑦   𝑓,𝑂,𝑔,𝑢,𝑥,𝑦   𝑆,𝑓,𝑔,𝑢,𝑥,𝑦   𝑄,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝜑,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑓,𝑌,𝑔,𝑢,𝑥,𝑦   𝑓,𝑍,𝑔,𝑢,𝑥,𝑦   𝑓,𝑋,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑇(𝑥)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔)   1 (𝑢)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔)

Proof of Theorem yonedalem4c
Dummy variables 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yoneda.y . . . . 5 𝑌 = (Yon‘𝐶)
2 yoneda.b . . . . 5 𝐵 = (Base‘𝐶)
3 yoneda.1 . . . . 5 1 = (Id‘𝐶)
4 yoneda.o . . . . 5 𝑂 = (oppCat‘𝐶)
5 yoneda.s . . . . 5 𝑆 = (SetCat‘𝑈)
6 yoneda.t . . . . 5 𝑇 = (SetCat‘𝑉)
7 yoneda.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
8 yoneda.h . . . . 5 𝐻 = (HomF𝑄)
9 yoneda.r . . . . 5 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
10 yoneda.e . . . . 5 𝐸 = (𝑂 evalF 𝑆)
11 yoneda.z . . . . 5 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
12 yoneda.c . . . . 5 (𝜑𝐶 ∈ Cat)
13 yoneda.w . . . . 5 (𝜑𝑉𝑊)
14 yoneda.u . . . . 5 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
15 yoneda.v . . . . 5 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
16 yonedalem21.f . . . . 5 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
17 yonedalem21.x . . . . 5 (𝜑𝑋𝐵)
18 yonedalem4.n . . . . 5 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
19 yonedalem4.p . . . . 5 (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19yonedalem4a 16915 . . . 4 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
21 oveq1 6657 . . . . . 6 (𝑦 = 𝑧 → (𝑦(Hom ‘𝐶)𝑋) = (𝑧(Hom ‘𝐶)𝑋))
22 oveq2 6658 . . . . . . . 8 (𝑦 = 𝑧 → (𝑋(2nd𝐹)𝑦) = (𝑋(2nd𝐹)𝑧))
2322fveq1d 6193 . . . . . . 7 (𝑦 = 𝑧 → ((𝑋(2nd𝐹)𝑦)‘𝑔) = ((𝑋(2nd𝐹)𝑧)‘𝑔))
2423fveq1d 6193 . . . . . 6 (𝑦 = 𝑧 → (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴) = (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))
2521, 24mpteq12dv 4733 . . . . 5 (𝑦 = 𝑧 → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)) = (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
2625cbvmptv 4750 . . . 4 (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) = (𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
2720, 26syl6eq 2672 . . 3 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))))
284, 2oppcbas 16378 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑂)
29 eqid 2622 . . . . . . . . . . . . 13 (Hom ‘𝑂) = (Hom ‘𝑂)
30 eqid 2622 . . . . . . . . . . . . 13 (Hom ‘𝑆) = (Hom ‘𝑆)
31 relfunc 16522 . . . . . . . . . . . . . . 15 Rel (𝑂 Func 𝑆)
32 1st2ndbr 7217 . . . . . . . . . . . . . . 15 ((Rel (𝑂 Func 𝑆) ∧ 𝐹 ∈ (𝑂 Func 𝑆)) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
3331, 16, 32sylancr 695 . . . . . . . . . . . . . 14 (𝜑 → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
3433adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
3517adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → 𝑋𝐵)
36 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → 𝑧𝐵)
3728, 29, 30, 34, 35, 36funcf2 16528 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → (𝑋(2nd𝐹)𝑧):(𝑋(Hom ‘𝑂)𝑧)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
3837adantr 481 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (𝑋(2nd𝐹)𝑧):(𝑋(Hom ‘𝑂)𝑧)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
39 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋))
40 eqid 2622 . . . . . . . . . . . . 13 (Hom ‘𝐶) = (Hom ‘𝐶)
4140, 4oppchom 16375 . . . . . . . . . . . 12 (𝑋(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑋)
4239, 41syl6eleqr 2712 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑔 ∈ (𝑋(Hom ‘𝑂)𝑧))
4338, 42ffvelrnd 6360 . . . . . . . . . 10 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑧)‘𝑔) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
4415unssbd 3791 . . . . . . . . . . . . . 14 (𝜑𝑈𝑉)
4513, 44ssexd 4805 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ V)
4645adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → 𝑈 ∈ V)
4746adantr 481 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑈 ∈ V)
48 eqid 2622 . . . . . . . . . . . . . . 15 (Base‘𝑆) = (Base‘𝑆)
4928, 48, 33funcf1 16526 . . . . . . . . . . . . . 14 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝑆))
505, 45setcbas 16728 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘𝑆))
5150feq3d 6032 . . . . . . . . . . . . . 14 (𝜑 → ((1st𝐹):𝐵𝑈 ↔ (1st𝐹):𝐵⟶(Base‘𝑆)))
5249, 51mpbird 247 . . . . . . . . . . . . 13 (𝜑 → (1st𝐹):𝐵𝑈)
5352, 17ffvelrnd 6360 . . . . . . . . . . . 12 (𝜑 → ((1st𝐹)‘𝑋) ∈ 𝑈)
5453ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((1st𝐹)‘𝑋) ∈ 𝑈)
5552ffvelrnda 6359 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → ((1st𝐹)‘𝑧) ∈ 𝑈)
5655adantr 481 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((1st𝐹)‘𝑧) ∈ 𝑈)
575, 47, 30, 54, 56elsetchom 16731 . . . . . . . . . 10 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑋(2nd𝐹)𝑧)‘𝑔) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ↔ ((𝑋(2nd𝐹)𝑧)‘𝑔):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑧)))
5843, 57mpbid 222 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑧)‘𝑔):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑧))
5919ad2antrr 762 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝐴 ∈ ((1st𝐹)‘𝑋))
6058, 59ffvelrnd 6360 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴) ∈ ((1st𝐹)‘𝑧))
61 eqid 2622 . . . . . . . 8 (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) = (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))
6260, 61fmptd 6385 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):(𝑧(Hom ‘𝐶)𝑋)⟶((1st𝐹)‘𝑧))
6312adantr 481 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝐶 ∈ Cat)
641, 2, 63, 35, 40, 36yon11 16904 . . . . . . . 8 ((𝜑𝑧𝐵) → ((1st ‘((1st𝑌)‘𝑋))‘𝑧) = (𝑧(Hom ‘𝐶)𝑋))
6564feq2d 6031 . . . . . . 7 ((𝜑𝑧𝐵) → ((𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧) ↔ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):(𝑧(Hom ‘𝐶)𝑋)⟶((1st𝐹)‘𝑧)))
6662, 65mpbird 247 . . . . . 6 ((𝜑𝑧𝐵) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧))
671, 2, 12, 17, 4, 5, 45, 14yon1cl 16903 . . . . . . . . . . 11 (𝜑 → ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆))
68 1st2ndbr 7217 . . . . . . . . . . 11 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
6931, 67, 68sylancr 695 . . . . . . . . . 10 (𝜑 → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
7028, 48, 69funcf1 16526 . . . . . . . . 9 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆))
7150feq3d 6032 . . . . . . . . 9 (𝜑 → ((1st ‘((1st𝑌)‘𝑋)):𝐵𝑈 ↔ (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆)))
7270, 71mpbird 247 . . . . . . . 8 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵𝑈)
7372ffvelrnda 6359 . . . . . . 7 ((𝜑𝑧𝐵) → ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ∈ 𝑈)
745, 46, 30, 73, 55elsetchom 16731 . . . . . 6 ((𝜑𝑧𝐵) → ((𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ↔ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧)))
7566, 74mpbird 247 . . . . 5 ((𝜑𝑧𝐵) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
7675ralrimiva 2966 . . . 4 (𝜑 → ∀𝑧𝐵 (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
77 fvex 6201 . . . . . 6 (Base‘𝐶) ∈ V
782, 77eqeltri 2697 . . . . 5 𝐵 ∈ V
79 mptelixpg 7945 . . . . 5 (𝐵 ∈ V → ((𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))) ∈ X𝑧𝐵 (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ↔ ∀𝑧𝐵 (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧))))
8078, 79ax-mp 5 . . . 4 ((𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))) ∈ X𝑧𝐵 (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ↔ ∀𝑧𝐵 (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
8176, 80sylibr 224 . . 3 (𝜑 → (𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))) ∈ X𝑧𝐵 (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
8227, 81eqeltrd 2701 . 2 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) ∈ X𝑧𝐵 (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
8312adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → 𝐶 ∈ Cat)
8417adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → 𝑋𝐵)
85 simpr1 1067 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → 𝑧𝐵)
861, 2, 83, 84, 40, 85yon11 16904 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((1st ‘((1st𝑌)‘𝑋))‘𝑧) = (𝑧(Hom ‘𝐶)𝑋))
8786eleq2d 2687 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↔ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)))
8887biimpa 501 . . . . . . 7 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋))
89 eqid 2622 . . . . . . . . . . . 12 (comp‘𝑂) = (comp‘𝑂)
90 eqid 2622 . . . . . . . . . . . 12 (comp‘𝑆) = (comp‘𝑆)
9133adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
9291adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
9384adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑋𝐵)
9485adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑧𝐵)
95 simpr2 1068 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → 𝑤𝐵)
9695adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑤𝐵)
97 simpr 477 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋))
9897, 41syl6eleqr 2712 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑘 ∈ (𝑋(Hom ‘𝑂)𝑧))
99 simplr3 1105 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ∈ (𝑧(Hom ‘𝑂)𝑤))
10028, 29, 89, 90, 92, 93, 94, 96, 98, 99funcco 16531 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑤)‘((⟨𝑋, 𝑧⟩(comp‘𝑂)𝑤)𝑘)) = (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑋(2nd𝐹)𝑧)‘𝑘)))
101 eqid 2622 . . . . . . . . . . . . 13 (comp‘𝐶) = (comp‘𝐶)
1022, 101, 4, 93, 94, 96oppcco 16377 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((⟨𝑋, 𝑧⟩(comp‘𝑂)𝑤)𝑘) = (𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))
103102fveq2d 6195 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑤)‘((⟨𝑋, 𝑧⟩(comp‘𝑂)𝑤)𝑘)) = ((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋))))
10445adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → 𝑈 ∈ V)
105104adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑈 ∈ V)
10653ad2antrr 762 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((1st𝐹)‘𝑋) ∈ 𝑈)
107553ad2antr1 1226 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((1st𝐹)‘𝑧) ∈ 𝑈)
108107adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((1st𝐹)‘𝑧) ∈ 𝑈)
10952adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (1st𝐹):𝐵𝑈)
110109, 95ffvelrnd 6360 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((1st𝐹)‘𝑤) ∈ 𝑈)
111110adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((1st𝐹)‘𝑤) ∈ 𝑈)
11228, 29, 30, 91, 84, 85funcf2 16528 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (𝑋(2nd𝐹)𝑧):(𝑋(Hom ‘𝑂)𝑧)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
113112adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (𝑋(2nd𝐹)𝑧):(𝑋(Hom ‘𝑂)𝑧)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
114113, 98ffvelrnd 6360 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑧)‘𝑘) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
1155, 105, 30, 106, 108elsetchom 16731 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑋(2nd𝐹)𝑧)‘𝑘) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ↔ ((𝑋(2nd𝐹)𝑧)‘𝑘):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑧)))
116114, 115mpbid 222 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑧)‘𝑘):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑧))
11728, 29, 30, 91, 85, 95funcf2 16528 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (𝑧(2nd𝐹)𝑤):(𝑧(Hom ‘𝑂)𝑤)⟶(((1st𝐹)‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑤)))
118 simpr3 1069 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ∈ (𝑧(Hom ‘𝑂)𝑤))
119117, 118ffvelrnd 6360 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((𝑧(2nd𝐹)𝑤)‘) ∈ (((1st𝐹)‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑤)))
1205, 104, 30, 107, 110elsetchom 16731 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝑧(2nd𝐹)𝑤)‘) ∈ (((1st𝐹)‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑤)) ↔ ((𝑧(2nd𝐹)𝑤)‘):((1st𝐹)‘𝑧)⟶((1st𝐹)‘𝑤)))
121119, 120mpbid 222 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((𝑧(2nd𝐹)𝑤)‘):((1st𝐹)‘𝑧)⟶((1st𝐹)‘𝑤))
122121adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑧(2nd𝐹)𝑤)‘):((1st𝐹)‘𝑧)⟶((1st𝐹)‘𝑤))
1235, 105, 90, 106, 108, 111, 116, 122setcco 16733 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑋(2nd𝐹)𝑧)‘𝑘)) = (((𝑧(2nd𝐹)𝑤)‘) ∘ ((𝑋(2nd𝐹)𝑧)‘𝑘)))
124100, 103, 1233eqtr3d 2664 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋))) = (((𝑧(2nd𝐹)𝑤)‘) ∘ ((𝑋(2nd𝐹)𝑧)‘𝑘)))
125124fveq1d 6193 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))‘𝐴) = ((((𝑧(2nd𝐹)𝑤)‘) ∘ ((𝑋(2nd𝐹)𝑧)‘𝑘))‘𝐴))
12619ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝐴 ∈ ((1st𝐹)‘𝑋))
127 fvco3 6275 . . . . . . . . . 10 ((((𝑋(2nd𝐹)𝑧)‘𝑘):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑧) ∧ 𝐴 ∈ ((1st𝐹)‘𝑋)) → ((((𝑧(2nd𝐹)𝑤)‘) ∘ ((𝑋(2nd𝐹)𝑧)‘𝑘))‘𝐴) = (((𝑧(2nd𝐹)𝑤)‘)‘(((𝑋(2nd𝐹)𝑧)‘𝑘)‘𝐴)))
128116, 126, 127syl2anc 693 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝑧(2nd𝐹)𝑤)‘) ∘ ((𝑋(2nd𝐹)𝑧)‘𝑘))‘𝐴) = (((𝑧(2nd𝐹)𝑤)‘)‘(((𝑋(2nd𝐹)𝑧)‘𝑘)‘𝐴)))
129125, 128eqtrd 2656 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))‘𝐴) = (((𝑧(2nd𝐹)𝑤)‘)‘(((𝑋(2nd𝐹)𝑧)‘𝑘)‘𝐴)))
13083adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat)
13140, 4oppchom 16375 . . . . . . . . . . . 12 (𝑧(Hom ‘𝑂)𝑤) = (𝑤(Hom ‘𝐶)𝑧)
13299, 131syl6eleq 2711 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ∈ (𝑤(Hom ‘𝐶)𝑧))
1331, 2, 130, 93, 40, 94, 101, 96, 132, 97yon12 16905 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘) = (𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))
134133fveq2d 6195 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘)) = ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋))))
13513ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑉𝑊)
13614ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ran (Homf𝐶) ⊆ 𝑈)
13715ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
13816ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝐹 ∈ (𝑂 Func 𝑆))
1392, 40, 101, 130, 96, 94, 93, 132, 97catcocl 16346 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)) ∈ (𝑤(Hom ‘𝐶)𝑋))
1401, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 130, 135, 136, 137, 138, 93, 18, 126, 96, 139yonedalem4b 16916 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋))) = (((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))‘𝐴))
141134, 140eqtrd 2656 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘)) = (((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))‘𝐴))
1421, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 130, 135, 136, 137, 138, 93, 18, 126, 94, 97yonedalem4b 16916 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘) = (((𝑋(2nd𝐹)𝑧)‘𝑘)‘𝐴))
143142fveq2d 6195 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘)) = (((𝑧(2nd𝐹)𝑤)‘)‘(((𝑋(2nd𝐹)𝑧)‘𝑘)‘𝐴)))
144129, 141, 1433eqtr4d 2666 . . . . . . 7 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘)) = (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘)))
14588, 144syldan 487 . . . . . 6 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘)) = (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘)))
146145mpteq2dva 4744 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘))) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘))))
14727fveq1d 6193 . . . . . . . . . . . 12 (𝜑 → (((𝐹𝑁𝑋)‘𝐴)‘𝑧) = ((𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))‘𝑧))
148 ovex 6678 . . . . . . . . . . . . . 14 (𝑧(Hom ‘𝐶)𝑋) ∈ V
149148mptex 6486 . . . . . . . . . . . . 13 (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ V
150 eqid 2622 . . . . . . . . . . . . . 14 (𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))) = (𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
151150fvmpt2 6291 . . . . . . . . . . . . 13 ((𝑧𝐵 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ V) → ((𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))‘𝑧) = (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
152149, 151mpan2 707 . . . . . . . . . . . 12 (𝑧𝐵 → ((𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))‘𝑧) = (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
153147, 152sylan9eq 2676 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → (((𝐹𝑁𝑋)‘𝐴)‘𝑧) = (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
154153feq1d 6030 . . . . . . . . . 10 ((𝜑𝑧𝐵) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧) ↔ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧)))
15566, 154mpbird 247 . . . . . . . . 9 ((𝜑𝑧𝐵) → (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧))
156155ralrimiva 2966 . . . . . . . 8 (𝜑 → ∀𝑧𝐵 (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧))
157156adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ∀𝑧𝐵 (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧))
158 fveq2 6191 . . . . . . . . 9 (𝑧 = 𝑤 → (((𝐹𝑁𝑋)‘𝐴)‘𝑧) = (((𝐹𝑁𝑋)‘𝐴)‘𝑤))
159 fveq2 6191 . . . . . . . . 9 (𝑧 = 𝑤 → ((1st ‘((1st𝑌)‘𝑋))‘𝑧) = ((1st ‘((1st𝑌)‘𝑋))‘𝑤))
160 fveq2 6191 . . . . . . . . 9 (𝑧 = 𝑤 → ((1st𝐹)‘𝑧) = ((1st𝐹)‘𝑤))
161158, 159, 160feq123d 6034 . . . . . . . 8 (𝑧 = 𝑤 → ((((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧) ↔ (((𝐹𝑁𝑋)‘𝐴)‘𝑤):((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟶((1st𝐹)‘𝑤)))
162161rspcv 3305 . . . . . . 7 (𝑤𝐵 → (∀𝑧𝐵 (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧) → (((𝐹𝑁𝑋)‘𝐴)‘𝑤):((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟶((1st𝐹)‘𝑤)))
16395, 157, 162sylc 65 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝐹𝑁𝑋)‘𝐴)‘𝑤):((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟶((1st𝐹)‘𝑤))
16469adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
16528, 29, 30, 164, 85, 95funcf2 16528 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤):(𝑧(Hom ‘𝑂)𝑤)⟶(((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑤)))
166165, 118ffvelrnd 6360 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑤)))
167733ad2antr1 1226 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ∈ 𝑈)
16872adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (1st ‘((1st𝑌)‘𝑋)):𝐵𝑈)
169168, 95ffvelrnd 6360 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((1st ‘((1st𝑌)‘𝑋))‘𝑤) ∈ 𝑈)
1705, 104, 30, 167, 169elsetchom 16731 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑤)) ↔ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑤)))
171166, 170mpbid 222 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑤))
172 fcompt 6400 . . . . . 6 (((((𝐹𝑁𝑋)‘𝐴)‘𝑤):((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟶((1st𝐹)‘𝑤) ∧ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑤)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤) ∘ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘))))
173163, 171, 172syl2anc 693 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤) ∘ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘))))
1741553ad2antr1 1226 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧))
175 fcompt 6400 . . . . . 6 ((((𝑧(2nd𝐹)𝑤)‘):((1st𝐹)‘𝑧)⟶((1st𝐹)‘𝑤) ∧ (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧)) → (((𝑧(2nd𝐹)𝑤)‘) ∘ (((𝐹𝑁𝑋)‘𝐴)‘𝑧)) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘))))
176121, 174, 175syl2anc 693 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝑧(2nd𝐹)𝑤)‘) ∘ (((𝐹𝑁𝑋)‘𝐴)‘𝑧)) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘))))
177146, 173, 1763eqtr4d 2666 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤) ∘ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (((𝑧(2nd𝐹)𝑤)‘) ∘ (((𝐹𝑁𝑋)‘𝐴)‘𝑧)))
1785, 104, 90, 167, 169, 110, 171, 163setcco 16733 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = ((((𝐹𝑁𝑋)‘𝐴)‘𝑤) ∘ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)))
1795, 104, 90, 167, 107, 110, 174, 121setcco 16733 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))(((𝐹𝑁𝑋)‘𝐴)‘𝑧)) = (((𝑧(2nd𝐹)𝑤)‘) ∘ (((𝐹𝑁𝑋)‘𝐴)‘𝑧)))
180177, 178, 1793eqtr4d 2666 . . 3 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))(((𝐹𝑁𝑋)‘𝐴)‘𝑧)))
181180ralrimivvva 2972 . 2 (𝜑 → ∀𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤)((((𝐹𝑁𝑋)‘𝐴)‘𝑤)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))(((𝐹𝑁𝑋)‘𝐴)‘𝑧)))
182 eqid 2622 . . 3 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
183182, 28, 29, 30, 90, 67, 16isnat2 16608 . 2 (𝜑 → (((𝐹𝑁𝑋)‘𝐴) ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↔ (((𝐹𝑁𝑋)‘𝐴) ∈ X𝑧𝐵 (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ∧ ∀𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤)((((𝐹𝑁𝑋)‘𝐴)‘𝑤)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))(((𝐹𝑁𝑋)‘𝐴)‘𝑧)))))
18482, 181, 183mpbir2and 957 1 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cun 3572  wss 3574  cop 4183   class class class wbr 4653  cmpt 4729  ran crn 5115  ccom 5118  Rel wrel 5119  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  tpos ctpos 7351  Xcixp 7908  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Idccid 16326  Homf chomf 16327  oppCatcoppc 16371   Func cfunc 16514  func ccofu 16516   Nat cnat 16601   FuncCat cfuc 16602  SetCatcsetc 16725   ×c cxpc 16808   1stF c1stf 16809   2ndF c2ndf 16810   ⟨,⟩F cprf 16811   evalF cevlf 16849  HomFchof 16888  Yoncyon 16889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-homf 16331  df-comf 16332  df-oppc 16372  df-func 16518  df-nat 16603  df-fuc 16604  df-setc 16726  df-xpc 16812  df-curf 16854  df-hof 16890  df-yon 16891
This theorem is referenced by:  yonedainv  16921
  Copyright terms: Public domain W3C validator