Proof of Theorem mulerpq
| Step | Hyp | Ref
| Expression |
| 1 | | nqercl 9753 |
. . . 4
⊢ (𝐴 ∈ (N ×
N) → ([Q]‘𝐴) ∈ Q) |
| 2 | | nqercl 9753 |
. . . 4
⊢ (𝐵 ∈ (N ×
N) → ([Q]‘𝐵) ∈ Q) |
| 3 | | mulpqnq 9763 |
. . . 4
⊢
((([Q]‘𝐴) ∈ Q ∧
([Q]‘𝐵)
∈ Q) → (([Q]‘𝐴) ·Q
([Q]‘𝐵)) =
([Q]‘(([Q]‘𝐴) ·pQ
([Q]‘𝐵)))) |
| 4 | 1, 2, 3 | syl2an 494 |
. . 3
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) →
(([Q]‘𝐴) ·Q
([Q]‘𝐵)) =
([Q]‘(([Q]‘𝐴) ·pQ
([Q]‘𝐵)))) |
| 5 | | enqer 9743 |
. . . . . 6
⊢
~Q Er (N ×
N) |
| 6 | 5 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) →
~Q Er (N ×
N)) |
| 7 | | nqerrel 9754 |
. . . . . . 7
⊢ (𝐴 ∈ (N ×
N) → 𝐴
~Q ([Q]‘𝐴)) |
| 8 | 7 | adantr 481 |
. . . . . 6
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → 𝐴 ~Q
([Q]‘𝐴)) |
| 9 | | elpqn 9747 |
. . . . . . . . 9
⊢
(([Q]‘𝐴) ∈ Q →
([Q]‘𝐴)
∈ (N × N)) |
| 10 | 1, 9 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈ (N ×
N) → ([Q]‘𝐴) ∈ (N ×
N)) |
| 11 | | mulerpqlem 9777 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (N ×
N) ∧ ([Q]‘𝐴) ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (𝐴 ~Q
([Q]‘𝐴)
↔ (𝐴
·pQ 𝐵) ~Q
(([Q]‘𝐴) ·pQ 𝐵))) |
| 12 | 11 | 3exp 1264 |
. . . . . . . 8
⊢ (𝐴 ∈ (N ×
N) → (([Q]‘𝐴) ∈ (N ×
N) → (𝐵
∈ (N × N) → (𝐴 ~Q
([Q]‘𝐴)
↔ (𝐴
·pQ 𝐵) ~Q
(([Q]‘𝐴) ·pQ 𝐵))))) |
| 13 | 10, 12 | mpd 15 |
. . . . . . 7
⊢ (𝐴 ∈ (N ×
N) → (𝐵
∈ (N × N) → (𝐴 ~Q
([Q]‘𝐴)
↔ (𝐴
·pQ 𝐵) ~Q
(([Q]‘𝐴) ·pQ 𝐵)))) |
| 14 | 13 | imp 445 |
. . . . . 6
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (𝐴 ~Q
([Q]‘𝐴)
↔ (𝐴
·pQ 𝐵) ~Q
(([Q]‘𝐴) ·pQ 𝐵))) |
| 15 | 8, 14 | mpbid 222 |
. . . . 5
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (𝐴 ·pQ 𝐵) ~Q
(([Q]‘𝐴) ·pQ 𝐵)) |
| 16 | | nqerrel 9754 |
. . . . . . . 8
⊢ (𝐵 ∈ (N ×
N) → 𝐵
~Q ([Q]‘𝐵)) |
| 17 | 16 | adantl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → 𝐵 ~Q
([Q]‘𝐵)) |
| 18 | | elpqn 9747 |
. . . . . . . . . 10
⊢
(([Q]‘𝐵) ∈ Q →
([Q]‘𝐵)
∈ (N × N)) |
| 19 | 2, 18 | syl 17 |
. . . . . . . . 9
⊢ (𝐵 ∈ (N ×
N) → ([Q]‘𝐵) ∈ (N ×
N)) |
| 20 | | mulerpqlem 9777 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ (N ×
N) ∧ ([Q]‘𝐵) ∈ (N ×
N) ∧ ([Q]‘𝐴) ∈ (N ×
N)) → (𝐵
~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ
([Q]‘𝐴)) ~Q
(([Q]‘𝐵) ·pQ
([Q]‘𝐴)))) |
| 21 | 20 | 3exp 1264 |
. . . . . . . . 9
⊢ (𝐵 ∈ (N ×
N) → (([Q]‘𝐵) ∈ (N ×
N) → (([Q]‘𝐴) ∈ (N ×
N) → (𝐵
~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ
([Q]‘𝐴)) ~Q
(([Q]‘𝐵) ·pQ
([Q]‘𝐴)))))) |
| 22 | 19, 21 | mpd 15 |
. . . . . . . 8
⊢ (𝐵 ∈ (N ×
N) → (([Q]‘𝐴) ∈ (N ×
N) → (𝐵
~Q ([Q]‘𝐵) ↔ (𝐵 ·pQ
([Q]‘𝐴)) ~Q
(([Q]‘𝐵) ·pQ
([Q]‘𝐴))))) |
| 23 | 10, 22 | mpan9 486 |
. . . . . . 7
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (𝐵 ~Q
([Q]‘𝐵)
↔ (𝐵
·pQ ([Q]‘𝐴)) ~Q
(([Q]‘𝐵) ·pQ
([Q]‘𝐴)))) |
| 24 | 17, 23 | mpbid 222 |
. . . . . 6
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (𝐵 ·pQ
([Q]‘𝐴)) ~Q
(([Q]‘𝐵) ·pQ
([Q]‘𝐴))) |
| 25 | | mulcompq 9774 |
. . . . . 6
⊢ (𝐵
·pQ ([Q]‘𝐴)) = (([Q]‘𝐴)
·pQ 𝐵) |
| 26 | | mulcompq 9774 |
. . . . . 6
⊢
(([Q]‘𝐵) ·pQ
([Q]‘𝐴)) = (([Q]‘𝐴)
·pQ ([Q]‘𝐵)) |
| 27 | 24, 25, 26 | 3brtr3g 4686 |
. . . . 5
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) →
(([Q]‘𝐴) ·pQ 𝐵) ~Q
(([Q]‘𝐴) ·pQ
([Q]‘𝐵))) |
| 28 | 6, 15, 27 | ertrd 7758 |
. . . 4
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (𝐴 ·pQ 𝐵) ~Q
(([Q]‘𝐴) ·pQ
([Q]‘𝐵))) |
| 29 | | mulpqf 9768 |
. . . . . 6
⊢
·pQ :((N × N)
× (N × N))⟶(N
× N) |
| 30 | 29 | fovcl 6765 |
. . . . 5
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → (𝐴 ·pQ 𝐵) ∈ (N
× N)) |
| 31 | 29 | fovcl 6765 |
. . . . . 6
⊢
((([Q]‘𝐴) ∈ (N ×
N) ∧ ([Q]‘𝐵) ∈ (N ×
N)) → (([Q]‘𝐴) ·pQ
([Q]‘𝐵)) ∈ (N ×
N)) |
| 32 | 10, 19, 31 | syl2an 494 |
. . . . 5
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) →
(([Q]‘𝐴) ·pQ
([Q]‘𝐵)) ∈ (N ×
N)) |
| 33 | | nqereq 9757 |
. . . . 5
⊢ (((𝐴
·pQ 𝐵) ∈ (N ×
N) ∧ (([Q]‘𝐴) ·pQ
([Q]‘𝐵)) ∈ (N ×
N)) → ((𝐴 ·pQ 𝐵) ~Q
(([Q]‘𝐴) ·pQ
([Q]‘𝐵)) ↔ ([Q]‘(𝐴
·pQ 𝐵)) =
([Q]‘(([Q]‘𝐴) ·pQ
([Q]‘𝐵))))) |
| 34 | 30, 32, 33 | syl2anc 693 |
. . . 4
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) → ((𝐴 ·pQ 𝐵) ~Q
(([Q]‘𝐴) ·pQ
([Q]‘𝐵)) ↔ ([Q]‘(𝐴
·pQ 𝐵)) =
([Q]‘(([Q]‘𝐴) ·pQ
([Q]‘𝐵))))) |
| 35 | 28, 34 | mpbid 222 |
. . 3
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) →
([Q]‘(𝐴
·pQ 𝐵)) =
([Q]‘(([Q]‘𝐴) ·pQ
([Q]‘𝐵)))) |
| 36 | 4, 35 | eqtr4d 2659 |
. 2
⊢ ((𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N)) →
(([Q]‘𝐴) ·Q
([Q]‘𝐵)) = ([Q]‘(𝐴
·pQ 𝐵))) |
| 37 | | 0nnq 9746 |
. . . . . . . 8
⊢ ¬
∅ ∈ Q |
| 38 | | nqerf 9752 |
. . . . . . . . . . . 12
⊢
[Q]:(N ×
N)⟶Q |
| 39 | 38 | fdmi 6052 |
. . . . . . . . . . 11
⊢ dom
[Q] = (N × N) |
| 40 | 39 | eleq2i 2693 |
. . . . . . . . . 10
⊢ (𝐴 ∈ dom [Q]
↔ 𝐴 ∈
(N × N)) |
| 41 | | ndmfv 6218 |
. . . . . . . . . 10
⊢ (¬
𝐴 ∈ dom
[Q] → ([Q]‘𝐴) = ∅) |
| 42 | 40, 41 | sylnbir 321 |
. . . . . . . . 9
⊢ (¬
𝐴 ∈ (N
× N) → ([Q]‘𝐴) = ∅) |
| 43 | 42 | eleq1d 2686 |
. . . . . . . 8
⊢ (¬
𝐴 ∈ (N
× N) → (([Q]‘𝐴) ∈ Q ↔ ∅
∈ Q)) |
| 44 | 37, 43 | mtbiri 317 |
. . . . . . 7
⊢ (¬
𝐴 ∈ (N
× N) → ¬ ([Q]‘𝐴) ∈
Q) |
| 45 | 44 | con4i 113 |
. . . . . 6
⊢
(([Q]‘𝐴) ∈ Q → 𝐴 ∈ (N ×
N)) |
| 46 | 39 | eleq2i 2693 |
. . . . . . . . . 10
⊢ (𝐵 ∈ dom [Q]
↔ 𝐵 ∈
(N × N)) |
| 47 | | ndmfv 6218 |
. . . . . . . . . 10
⊢ (¬
𝐵 ∈ dom
[Q] → ([Q]‘𝐵) = ∅) |
| 48 | 46, 47 | sylnbir 321 |
. . . . . . . . 9
⊢ (¬
𝐵 ∈ (N
× N) → ([Q]‘𝐵) = ∅) |
| 49 | 48 | eleq1d 2686 |
. . . . . . . 8
⊢ (¬
𝐵 ∈ (N
× N) → (([Q]‘𝐵) ∈ Q ↔ ∅
∈ Q)) |
| 50 | 37, 49 | mtbiri 317 |
. . . . . . 7
⊢ (¬
𝐵 ∈ (N
× N) → ¬ ([Q]‘𝐵) ∈
Q) |
| 51 | 50 | con4i 113 |
. . . . . 6
⊢
(([Q]‘𝐵) ∈ Q → 𝐵 ∈ (N ×
N)) |
| 52 | 45, 51 | anim12i 590 |
. . . . 5
⊢
((([Q]‘𝐴) ∈ Q ∧
([Q]‘𝐵)
∈ Q) → (𝐴 ∈ (N ×
N) ∧ 𝐵
∈ (N × N))) |
| 53 | 52 | con3i 150 |
. . . 4
⊢ (¬
(𝐴 ∈ (N
× N) ∧ 𝐵 ∈ (N ×
N)) → ¬ (([Q]‘𝐴) ∈ Q ∧
([Q]‘𝐵)
∈ Q)) |
| 54 | | mulnqf 9771 |
. . . . . 6
⊢
·Q :(Q ×
Q)⟶Q |
| 55 | 54 | fdmi 6052 |
. . . . 5
⊢ dom
·Q = (Q ×
Q) |
| 56 | 55 | ndmov 6818 |
. . . 4
⊢ (¬
(([Q]‘𝐴) ∈ Q ∧
([Q]‘𝐵)
∈ Q) → (([Q]‘𝐴) ·Q
([Q]‘𝐵)) = ∅) |
| 57 | 53, 56 | syl 17 |
. . 3
⊢ (¬
(𝐴 ∈ (N
× N) ∧ 𝐵 ∈ (N ×
N)) → (([Q]‘𝐴) ·Q
([Q]‘𝐵)) = ∅) |
| 58 | | 0nelxp 5143 |
. . . . . 6
⊢ ¬
∅ ∈ (N × N) |
| 59 | 39 | eleq2i 2693 |
. . . . . 6
⊢ (∅
∈ dom [Q] ↔ ∅ ∈ (N ×
N)) |
| 60 | 58, 59 | mtbir 313 |
. . . . 5
⊢ ¬
∅ ∈ dom [Q] |
| 61 | 29 | fdmi 6052 |
. . . . . . 7
⊢ dom
·pQ = ((N ×
N) × (N ×
N)) |
| 62 | 61 | ndmov 6818 |
. . . . . 6
⊢ (¬
(𝐴 ∈ (N
× N) ∧ 𝐵 ∈ (N ×
N)) → (𝐴
·pQ 𝐵) = ∅) |
| 63 | 62 | eleq1d 2686 |
. . . . 5
⊢ (¬
(𝐴 ∈ (N
× N) ∧ 𝐵 ∈ (N ×
N)) → ((𝐴 ·pQ 𝐵) ∈ dom [Q]
↔ ∅ ∈ dom [Q])) |
| 64 | 60, 63 | mtbiri 317 |
. . . 4
⊢ (¬
(𝐴 ∈ (N
× N) ∧ 𝐵 ∈ (N ×
N)) → ¬ (𝐴 ·pQ 𝐵) ∈ dom
[Q]) |
| 65 | | ndmfv 6218 |
. . . 4
⊢ (¬
(𝐴
·pQ 𝐵) ∈ dom [Q] →
([Q]‘(𝐴
·pQ 𝐵)) = ∅) |
| 66 | 64, 65 | syl 17 |
. . 3
⊢ (¬
(𝐴 ∈ (N
× N) ∧ 𝐵 ∈ (N ×
N)) → ([Q]‘(𝐴 ·pQ 𝐵)) = ∅) |
| 67 | 57, 66 | eqtr4d 2659 |
. 2
⊢ (¬
(𝐴 ∈ (N
× N) ∧ 𝐵 ∈ (N ×
N)) → (([Q]‘𝐴) ·Q
([Q]‘𝐵)) = ([Q]‘(𝐴
·pQ 𝐵))) |
| 68 | 36, 67 | pm2.61i 176 |
1
⊢
(([Q]‘𝐴) ·Q
([Q]‘𝐵)) = ([Q]‘(𝐴
·pQ 𝐵)) |