| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulerpq | Structured version Visualization version Unicode version | ||
| Description: Multiplication is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulerpq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nqercl 9753 |
. . . 4
| |
| 2 | nqercl 9753 |
. . . 4
| |
| 3 | mulpqnq 9763 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2an 494 |
. . 3
|
| 5 | enqer 9743 |
. . . . . 6
| |
| 6 | 5 | a1i 11 |
. . . . 5
|
| 7 | nqerrel 9754 |
. . . . . . 7
| |
| 8 | 7 | adantr 481 |
. . . . . 6
|
| 9 | elpqn 9747 |
. . . . . . . . 9
| |
| 10 | 1, 9 | syl 17 |
. . . . . . . 8
|
| 11 | mulerpqlem 9777 |
. . . . . . . . 9
| |
| 12 | 11 | 3exp 1264 |
. . . . . . . 8
|
| 13 | 10, 12 | mpd 15 |
. . . . . . 7
|
| 14 | 13 | imp 445 |
. . . . . 6
|
| 15 | 8, 14 | mpbid 222 |
. . . . 5
|
| 16 | nqerrel 9754 |
. . . . . . . 8
| |
| 17 | 16 | adantl 482 |
. . . . . . 7
|
| 18 | elpqn 9747 |
. . . . . . . . . 10
| |
| 19 | 2, 18 | syl 17 |
. . . . . . . . 9
|
| 20 | mulerpqlem 9777 |
. . . . . . . . . 10
| |
| 21 | 20 | 3exp 1264 |
. . . . . . . . 9
|
| 22 | 19, 21 | mpd 15 |
. . . . . . . 8
|
| 23 | 10, 22 | mpan9 486 |
. . . . . . 7
|
| 24 | 17, 23 | mpbid 222 |
. . . . . 6
|
| 25 | mulcompq 9774 |
. . . . . 6
| |
| 26 | mulcompq 9774 |
. . . . . 6
| |
| 27 | 24, 25, 26 | 3brtr3g 4686 |
. . . . 5
|
| 28 | 6, 15, 27 | ertrd 7758 |
. . . 4
|
| 29 | mulpqf 9768 |
. . . . . 6
| |
| 30 | 29 | fovcl 6765 |
. . . . 5
|
| 31 | 29 | fovcl 6765 |
. . . . . 6
|
| 32 | 10, 19, 31 | syl2an 494 |
. . . . 5
|
| 33 | nqereq 9757 |
. . . . 5
| |
| 34 | 30, 32, 33 | syl2anc 693 |
. . . 4
|
| 35 | 28, 34 | mpbid 222 |
. . 3
|
| 36 | 4, 35 | eqtr4d 2659 |
. 2
|
| 37 | 0nnq 9746 |
. . . . . . . 8
| |
| 38 | nqerf 9752 |
. . . . . . . . . . . 12
| |
| 39 | 38 | fdmi 6052 |
. . . . . . . . . . 11
|
| 40 | 39 | eleq2i 2693 |
. . . . . . . . . 10
|
| 41 | ndmfv 6218 |
. . . . . . . . . 10
| |
| 42 | 40, 41 | sylnbir 321 |
. . . . . . . . 9
|
| 43 | 42 | eleq1d 2686 |
. . . . . . . 8
|
| 44 | 37, 43 | mtbiri 317 |
. . . . . . 7
|
| 45 | 44 | con4i 113 |
. . . . . 6
|
| 46 | 39 | eleq2i 2693 |
. . . . . . . . . 10
|
| 47 | ndmfv 6218 |
. . . . . . . . . 10
| |
| 48 | 46, 47 | sylnbir 321 |
. . . . . . . . 9
|
| 49 | 48 | eleq1d 2686 |
. . . . . . . 8
|
| 50 | 37, 49 | mtbiri 317 |
. . . . . . 7
|
| 51 | 50 | con4i 113 |
. . . . . 6
|
| 52 | 45, 51 | anim12i 590 |
. . . . 5
|
| 53 | 52 | con3i 150 |
. . . 4
|
| 54 | mulnqf 9771 |
. . . . . 6
| |
| 55 | 54 | fdmi 6052 |
. . . . 5
|
| 56 | 55 | ndmov 6818 |
. . . 4
|
| 57 | 53, 56 | syl 17 |
. . 3
|
| 58 | 0nelxp 5143 |
. . . . . 6
| |
| 59 | 39 | eleq2i 2693 |
. . . . . 6
|
| 60 | 58, 59 | mtbir 313 |
. . . . 5
|
| 61 | 29 | fdmi 6052 |
. . . . . . 7
|
| 62 | 61 | ndmov 6818 |
. . . . . 6
|
| 63 | 62 | eleq1d 2686 |
. . . . 5
|
| 64 | 60, 63 | mtbiri 317 |
. . . 4
|
| 65 | ndmfv 6218 |
. . . 4
| |
| 66 | 64, 65 | syl 17 |
. . 3
|
| 67 | 57, 66 | eqtr4d 2659 |
. 2
|
| 68 | 36, 67 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-ni 9694 df-mi 9696 df-lti 9697 df-mpq 9731 df-enq 9733 df-nq 9734 df-erq 9735 df-mq 9737 df-1nq 9738 |
| This theorem is referenced by: mulassnq 9781 distrnq 9783 recmulnq 9786 |
| Copyright terms: Public domain | W3C validator |